TY - JOUR
T1 - A novel mouse model of hypogonadotrophic hypogonadism
T2 - N-ethyl-N- nitrosourea-induced gonadotropin-releasing hormone receptor gene mutation
AU - Pask, Andrew J.
AU - Kanasaki, Haruhiko
AU - Kaiser, Ursula B.
AU - Conn, P. Michael
AU - Janovick, Jo Ann
AU - Stockton, David W.
AU - Hess, David L.
AU - Justice, Monica J.
AU - Behringer, Richard R.
PY - 2005/4
Y1 - 2005/4
N2 - An autosomal-recessive mutation that causes hypogonadotrophic hypogonadism was isolated during an N-ethyl-N-nitrosourea mutagenesis screen in mice. Affected males had micropenis and small, undescended testes with spermatogenesis arrested at the pschytene stage of meiosis, leading to sterility. Androgen-sensitive organs were small and immature. Affected females were externally normal but sterile with small ovaries due to an arrest at the secondary stage of folliculogenesis, and the uterus and oviducts were thin and immature. Circulating reproductive hormones were significantly decreased in affected males and females. There was also a dramatic reduction in the numbers of FSH- and LH-producing gonadotrophs. Meiotic mapping of the mutation and candidate gene sequencing determined that the N-ethyl-N-nitrosourea-induced lesion is in the third transmembrane domain of the GnRH receptor gene (Gnrhr). In vitro studies indicate that the mutant receptor is not coupled to the plasma membrane signal transduction system. Moreover, this mutant cannot be rescued with defined GnRH receptor pharmacoperones (pharmacological chaperones), an approach that rescues many other misfolded mutants. The mutant GnRH receptor was also shown to exert a dominant-negative effect on wild-type receptor function, indicating that the mutant receptor is unable to fold properly and likely misrouted within the cell, not reaching the plasma membrane. Surprisingly, Gnrhr mutant transcripts were significantly up-regulated in the pituitaries of Gnrhr mutants, revealing a previously unknown autoregulatory feedback loop. This is the first report of a mouse with a Gnrhr loss of function mutation. These GnRH-insensitive mice provide a novel animal model for the study of human idiopathic hypogonadotrophic hypogonadism.
AB - An autosomal-recessive mutation that causes hypogonadotrophic hypogonadism was isolated during an N-ethyl-N-nitrosourea mutagenesis screen in mice. Affected males had micropenis and small, undescended testes with spermatogenesis arrested at the pschytene stage of meiosis, leading to sterility. Androgen-sensitive organs were small and immature. Affected females were externally normal but sterile with small ovaries due to an arrest at the secondary stage of folliculogenesis, and the uterus and oviducts were thin and immature. Circulating reproductive hormones were significantly decreased in affected males and females. There was also a dramatic reduction in the numbers of FSH- and LH-producing gonadotrophs. Meiotic mapping of the mutation and candidate gene sequencing determined that the N-ethyl-N-nitrosourea-induced lesion is in the third transmembrane domain of the GnRH receptor gene (Gnrhr). In vitro studies indicate that the mutant receptor is not coupled to the plasma membrane signal transduction system. Moreover, this mutant cannot be rescued with defined GnRH receptor pharmacoperones (pharmacological chaperones), an approach that rescues many other misfolded mutants. The mutant GnRH receptor was also shown to exert a dominant-negative effect on wild-type receptor function, indicating that the mutant receptor is unable to fold properly and likely misrouted within the cell, not reaching the plasma membrane. Surprisingly, Gnrhr mutant transcripts were significantly up-regulated in the pituitaries of Gnrhr mutants, revealing a previously unknown autoregulatory feedback loop. This is the first report of a mouse with a Gnrhr loss of function mutation. These GnRH-insensitive mice provide a novel animal model for the study of human idiopathic hypogonadotrophic hypogonadism.
UR - http://www.scopus.com/inward/record.url?scp=15444378594&partnerID=8YFLogxK
U2 - 10.1210/me.2004-0192
DO - 10.1210/me.2004-0192
M3 - Article
C2 - 15625238
AN - SCOPUS:15444378594
SN - 0888-8809
VL - 19
SP - 972
EP - 981
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 4
ER -