A stochastic composite gradient method with incremental variance reduction

Junyu Zhang, Lin Xiao

Research output: Contribution to journalConference articlepeer-review

29 Scopus citations

Abstract

We consider the problem of minimizing the composition of a smooth (nonconvex) function and a smooth vector mapping, where the inner mapping is in the form of an expectation over some random variable or a finite sum. We propose a stochastic composite gradient method that employs an incremental variance-reduced estimator for both the inner vector mapping and its Jacobian. We show that this method achieves the same orders of complexity as the best known first-order methods for minimizing expected-value and finite-sum nonconvex functions, despite the additional outer composition which renders the composite gradient estimator biased. This finding enables a much broader range of applications in machine learning to benefit from the low complexity of incremental variance-reduction methods.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

Fingerprint

Dive into the research topics of 'A stochastic composite gradient method with incremental variance reduction'. Together they form a unique fingerprint.

Cite this