TY - JOUR
T1 - A stochastic composite gradient method with incremental variance reduction
AU - Zhang, Junyu
AU - Xiao, Lin
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - We consider the problem of minimizing the composition of a smooth (nonconvex) function and a smooth vector mapping, where the inner mapping is in the form of an expectation over some random variable or a finite sum. We propose a stochastic composite gradient method that employs an incremental variance-reduced estimator for both the inner vector mapping and its Jacobian. We show that this method achieves the same orders of complexity as the best known first-order methods for minimizing expected-value and finite-sum nonconvex functions, despite the additional outer composition which renders the composite gradient estimator biased. This finding enables a much broader range of applications in machine learning to benefit from the low complexity of incremental variance-reduction methods.
AB - We consider the problem of minimizing the composition of a smooth (nonconvex) function and a smooth vector mapping, where the inner mapping is in the form of an expectation over some random variable or a finite sum. We propose a stochastic composite gradient method that employs an incremental variance-reduced estimator for both the inner vector mapping and its Jacobian. We show that this method achieves the same orders of complexity as the best known first-order methods for minimizing expected-value and finite-sum nonconvex functions, despite the additional outer composition which renders the composite gradient estimator biased. This finding enables a much broader range of applications in machine learning to benefit from the low complexity of incremental variance-reduction methods.
UR - http://www.scopus.com/inward/record.url?scp=85090173910&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85090173910
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -