TY - GEN
T1 - An Evaluation of Low Overhead Time Series Preprocessing Techniques for Downstream Machine Learning
AU - Weiss, Matthew L.
AU - McDonald, Joseph
AU - Bestor, David
AU - Yee, Charles
AU - Edelman, Daniel
AU - Jones, Michael
AU - Prout, Andrew
AU - Bowne, Andrew
AU - McEvoy, Lindsey
AU - Gadepally, Vijay
AU - Samsi, Siddharth
N1 - Funding Information:
Research was sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. §Corresponding author. Email : mlweiss@ll.mit.edu
Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - In this paper we address the application of pre-processing techniques to multi-channel time series data with varying lengths, which we refer to as the alignment problem, for downstream machine learning. The misalignment of multi-channel time series data may occur for a variety of reasons, such as missing data, varying sampling rates, or inconsistent collection times. We consider multi-channel time series data collected from the MIT SuperCloud High Performance Computing (HPC) center, where different job start times and varying run times of HPC jobs result in misaligned data. This misalignment makes it challenging to build AI/ML approaches for tasks such as compute workload classification. Building on previous supervised classification work with the MIT SuperCloud Dataset, we address the alignment problem via three broad, low overhead approaches: sampling a fixed subset from a full time series, performing summary statistics on a full time series, and sampling a subset of coefficients from time series mapped to the frequency domain. Our best performing models achieve a classification accuracy greater than 95%, outperforming previous approaches to multi-channel time series classification with the MIT SuperCloud Dataset by 5 %. These results indicate our low overhead approaches to solving the alignment problem, in conjunction with standard machine learning techniques, are able to achieve high levels of classification accuracy, and serve as a baseline for future approaches to addressing the alignment problem, such as kernel methods.
AB - In this paper we address the application of pre-processing techniques to multi-channel time series data with varying lengths, which we refer to as the alignment problem, for downstream machine learning. The misalignment of multi-channel time series data may occur for a variety of reasons, such as missing data, varying sampling rates, or inconsistent collection times. We consider multi-channel time series data collected from the MIT SuperCloud High Performance Computing (HPC) center, where different job start times and varying run times of HPC jobs result in misaligned data. This misalignment makes it challenging to build AI/ML approaches for tasks such as compute workload classification. Building on previous supervised classification work with the MIT SuperCloud Dataset, we address the alignment problem via three broad, low overhead approaches: sampling a fixed subset from a full time series, performing summary statistics on a full time series, and sampling a subset of coefficients from time series mapped to the frequency domain. Our best performing models achieve a classification accuracy greater than 95%, outperforming previous approaches to multi-channel time series classification with the MIT SuperCloud Dataset by 5 %. These results indicate our low overhead approaches to solving the alignment problem, in conjunction with standard machine learning techniques, are able to achieve high levels of classification accuracy, and serve as a baseline for future approaches to addressing the alignment problem, such as kernel methods.
UR - http://www.scopus.com/inward/record.url?scp=85142300998&partnerID=8YFLogxK
U2 - 10.1109/HPEC55821.2022.9926406
DO - 10.1109/HPEC55821.2022.9926406
M3 - Conference contribution
AN - SCOPUS:85142300998
T3 - 2022 IEEE High Performance Extreme Computing Conference, HPEC 2022
BT - 2022 IEEE High Performance Extreme Computing Conference, HPEC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 19 September 2022 through 23 September 2022
ER -