Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation

John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, Carlos Fiolhais

Research output: Contribution to journalArticlepeer-review

18680 Scopus citations

Abstract

Generalized gradient approximations (GGAs) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a GGA based on real-space cutoff of the spurious long-range components of the second-order gradient expansion for the exchange-correlation hole. We have found that this density functional performs well in numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ionization energies and electron affinities are improved in a statistical sense, although significant interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancellation of error between density functionals for exchange and correlation, which is most striking whenever the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the lattice constants of Li and Na by 34 % is corrected, and the magnetic ground state of solid Fe is restored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature energy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the positive long-range contribution, we find surface and curvature energies in good agreement with experimental or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects.

Original languageEnglish
Pages (from-to)6671-6687
Number of pages17
JournalPhysical Review B
Volume46
Issue number11
DOIs
StatePublished - 1992

Fingerprint

Dive into the research topics of 'Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation'. Together they form a unique fingerprint.

Cite this