TY - JOUR
T1 - Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity
AU - Pulinilkunnil, T.
AU - Kienesberger, P. C.
AU - Nagendran, J.
AU - Sharma, N.
AU - Young, M. E.
AU - Dyck, J. R.B.
N1 - Funding Information:
This work was supported by grants from the Canadian Institute of Health Research and Canadian Diabetes Association to JRBD, post-doctoral fellowships from the Heart and Stroke Foundation of Canada and the Canadian Diabetes Association to PCK, and Alberta Innovates-Health Solutions (AIHS) post-doctoral fellowships to TP and PCK.
PY - 2014/2
Y1 - 2014/2
N2 - Background:Although obesity increases the risk of developing cardiomyopathy, the mechanisms underlying the development of this cardiomyopathy are incompletely understood. As obesity is also associated with increased intramyocardial triacylglycerol (TAG) deposition, also referred to as cardiac steatosis, we hypothesized that alterations in myocardial TAG metabolism and excess TAG accumulation contribute to obesity-induced cardiomyopathy.Objective and design:To test if increased TAG catabolism could ameliorate obesity-induced cardiac steatosis and dysfunction, we utilized wild-type (WT) mice and mice with cardiomyocyte-specific overexpression of adipose triglyceride lipase (MHC-ATGL mice), which regulates cardiac TAG hydrolysis. WT and MHC-ATGL mice were fed either regular chow (13.5 kcal% fat) or high fat-high sucrose (HFHS; 45 kcal% fat and 17 kcal% sucrose) diet for 16 weeks to induce obesity and mice were subsequently studied at the physiological, biochemical and molecular level.Results:Obese MHC-ATGL mice were protected from increased intramyocardial TAG accumulation, despite similar increases in body weight and systemic insulin resistance as obese WT mice. Importantly, analysis of in vivo cardiac function using transthoracic echocardiography showed that ATGL overexpression protected from obesity-induced systolic and diastolic dysfunction and ventricular dilatation. Ex vivo working heart perfusions revealed impaired cardiac glucose oxidation following obesity in both WT and MHC-ATGL mice, which was consistent with similar impaired cardiac insulin signaling between genotypes. However, hearts from obese MHC-ATGL mice exhibited reduced reliance on palmitate oxidation when compared with the obese WT, which was accompanied by decreased expression of proteins involved in fatty acid uptake, storage and oxidation in MHC-ATGL hearts.Conclusion:These findings suggest that cardiomyocyte-specific ATGL overexpression was sufficient to prevent cardiac steatosis and decrease fatty acid utilization following HFHS diet feeding, leading to protection against obesity-induced cardiac dysfunction.
AB - Background:Although obesity increases the risk of developing cardiomyopathy, the mechanisms underlying the development of this cardiomyopathy are incompletely understood. As obesity is also associated with increased intramyocardial triacylglycerol (TAG) deposition, also referred to as cardiac steatosis, we hypothesized that alterations in myocardial TAG metabolism and excess TAG accumulation contribute to obesity-induced cardiomyopathy.Objective and design:To test if increased TAG catabolism could ameliorate obesity-induced cardiac steatosis and dysfunction, we utilized wild-type (WT) mice and mice with cardiomyocyte-specific overexpression of adipose triglyceride lipase (MHC-ATGL mice), which regulates cardiac TAG hydrolysis. WT and MHC-ATGL mice were fed either regular chow (13.5 kcal% fat) or high fat-high sucrose (HFHS; 45 kcal% fat and 17 kcal% sucrose) diet for 16 weeks to induce obesity and mice were subsequently studied at the physiological, biochemical and molecular level.Results:Obese MHC-ATGL mice were protected from increased intramyocardial TAG accumulation, despite similar increases in body weight and systemic insulin resistance as obese WT mice. Importantly, analysis of in vivo cardiac function using transthoracic echocardiography showed that ATGL overexpression protected from obesity-induced systolic and diastolic dysfunction and ventricular dilatation. Ex vivo working heart perfusions revealed impaired cardiac glucose oxidation following obesity in both WT and MHC-ATGL mice, which was consistent with similar impaired cardiac insulin signaling between genotypes. However, hearts from obese MHC-ATGL mice exhibited reduced reliance on palmitate oxidation when compared with the obese WT, which was accompanied by decreased expression of proteins involved in fatty acid uptake, storage and oxidation in MHC-ATGL hearts.Conclusion:These findings suggest that cardiomyocyte-specific ATGL overexpression was sufficient to prevent cardiac steatosis and decrease fatty acid utilization following HFHS diet feeding, leading to protection against obesity-induced cardiac dysfunction.
KW - ATGL
KW - cardiomyopathy
KW - energy metabolism
KW - lipolysis
KW - triacylglycerol
KW - western diet
UR - http://www.scopus.com/inward/record.url?scp=84896715505&partnerID=8YFLogxK
U2 - 10.1038/ijo.2013.103
DO - 10.1038/ijo.2013.103
M3 - Article
C2 - 23817015
AN - SCOPUS:84896715505
SN - 0307-0565
VL - 38
SP - 205
EP - 215
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 2
ER -