Abstract
This work shows how phase-shifted time-modulations applied to two or more near-field coupled resonators can be engineered to achieve magnet-free optical isolation in a compact footprint. Because of the strong light-matter interaction afforded by high quality factor resonant cavities, only modest modulation amplitudes are required. A coupled mode theory model is developed which is subject to simulated annealing to optimize device performance. Then it is shown via finite-difference time-domain simulation how the device may be implemented in a one dimensional photonic crystal geometry etched in a silicon ridge waveguide. These devices can be implemented in native silicon with standard electrical contacts thereby maintaining CMOS-compatible fabrication without the need for additional specialized materials. Isolation ratios of over 40 dB with insertion loss less than 1 dB using modulation frequencies under 25 GHz are achievable in this device platform.
Original language | English |
---|---|
Pages (from-to) | 39207-39221 |
Number of pages | 15 |
Journal | Optics Express |
Volume | 30 |
Issue number | 21 |
DOIs | |
State | Published - Oct 10 2022 |