TY - JOUR
T1 - Control of trichloroethylene emissions from sparging systems by horizontal bio- and chemo- barriers
AU - Tezel, U.
AU - Demirer, Goksel
PY - 2005
Y1 - 2005
N2 - The scope of this study was to develop a continuous system to clean-up a trichloroethylene (TCE) contaminated gas stream, where biotic and abiotic removal mechanisms are undertaken sequentially simulating the horizontal bio- and chemo-barriers proposed for the in-situ remediation of the contaminated sites. The bio- and chemo-barriers were simulated by using glass columns packed with granular anaerobic mixed culture and Fe(0) filings, respectively. The effect of gas residence time, which is adjusted by the gas flowrate, on the TCE removal efficiency of the reactor system was investigated. TCE removal efficiency of over 90\% was achieved at gas residence times above 1hr. Furthermore, the effluent of reactor system contained only ethane and ethylene, which are non-toxic by-products of TCE reduction reactions, along with trace amounts of TCE. \textcopyright Selper Ltd, 2005.
AB - The scope of this study was to develop a continuous system to clean-up a trichloroethylene (TCE) contaminated gas stream, where biotic and abiotic removal mechanisms are undertaken sequentially simulating the horizontal bio- and chemo-barriers proposed for the in-situ remediation of the contaminated sites. The bio- and chemo-barriers were simulated by using glass columns packed with granular anaerobic mixed culture and Fe(0) filings, respectively. The effect of gas residence time, which is adjusted by the gas flowrate, on the TCE removal efficiency of the reactor system was investigated. TCE removal efficiency of over 90\% was achieved at gas residence times above 1hr. Furthermore, the effluent of reactor system contained only ethane and ethylene, which are non-toxic by-products of TCE reduction reactions, along with trace amounts of TCE. \textcopyright Selper Ltd, 2005.
M3 - Article
VL - 26
JO - Environmental Technology
JF - Environmental Technology
IS - 2
ER -