Controls on uranium distribution in lake sediments

Anthony Chappaz, Charles Gobeil, André Tessier

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Uranium geochemistry has been investigated in three acid lakes located on the Canadian Shield and one circumneutral lake in the Appalachian Region of Eastern Canada. In all Shield lakes, dissolved U concentrations were higher in the porewater than in the overlying water. In one of them, whose hypolimnion is perennially oxic, U released to porewater at depths of Fe remobilization was removed from the porewater at depths of Fe oxyhydroxides precipitation; these similarities in the U and Fe profiles indicate that part of the U becomes associated to Fe oxyhydroxides. The dissolved U and Fe profiles in the other two Shield lakes, whose hypolimnions were anoxic when sampled, did not show any significant recycling of these elements in the vicinity of the sediment-water interface and both elements diffused from the sediment to the overlying water. In contrast, in the Appalachian Lake, dissolved U concentrations were higher in the overlying water than in porewater, strongly decreased at the vicinity of the sediment-water interface and then remained relatively constant with sediment depth. Diagenetic modeling of the porewater U profiles, assuming steady-state, reveals that authigenic U always represented ≤3% of the total U concentration in the sediments of all lakes. This observation indicates that diagenetic reactions involving U are not quantitatively important and that most of the U was delivered to the sediments at our study sites as particulate U and not through diffusion across the sediment-water interface, as is seen in continental margin sediments. Comparison of the U:Corg and U:Fe molar ratios in diagenetic material collected across the sediment-water interface with Teflon sheets and in surface sediments (0-0.5 cm) of the lake having a perennially oxic hypolimnion suggest that solid phase U was mainly bound to organic matter originating from the watershed; a strong statistical correlation between sediment non-lithogenic U and Corg in the Appalachian Lake supports this contention. Thermodynamic calculations of saturation states suggest that dissolved U was not removed from porewater through precipitation of UO2(s), U3O7(s) and U3O8(s) as previously proposed in the literature. Crown

Original languageEnglish
Pages (from-to)203-214
Number of pages12
JournalGeochimica et Cosmochimica Acta
Volume74
Issue number1
DOIs
StatePublished - Jan 1 2010

Fingerprint

Dive into the research topics of 'Controls on uranium distribution in lake sediments'. Together they form a unique fingerprint.

Cite this