TY - JOUR
T1 - Convolutional-Neural-Network-Based Handwritten Character Recognition
T2 - An Approach with Massive Multisource Data
AU - Saqib, Nazmus
AU - Haque, Khandaker Foysal
AU - Yanambaka, Venkata Prasanth
AU - Abdelgawad, Ahmed
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4
Y1 - 2022/4
N2 - Neural networks have made big strides in image classification. Convolutional neural networks (CNN) work successfully to run neural networks on direct images. Handwritten character recognition (HCR) is now a very powerful tool to detect traffic signals, translate language, and extract information from documents, etc. Although handwritten character recognition technology is in use in the industry, present accuracy is not outstanding, which compromises both performance and usability. Thus, the character recognition technologies in use are still not very reliable and need further improvement to be extensively deployed for serious and reliable tasks. On this account, characters of the English alphabet and digit recognition are performed by proposing a custom-tailored CNN model with two different datasets of handwritten images, i.e., Kaggle and MNIST, respectively, which are lightweight but achieve higher accuracies than state-of-the-art models. The best two models from the total of twelve designed are proposed by altering hyper-parameters to observe which models provide the best accuracy for which dataset. In addition, the classification reports (CRs) of these two proposed models are extensively investigated considering the performance matrices, such as precision, recall, specificity, and F1 score, which are obtained from the developed confusion matrix (CM). To simulate a practical scenario, the dataset is kept unbalanced and three more averages for the F measurement (micro, macro, and weighted) are calculated, which facilitates better understanding of the performances of the models. The highest accuracy of 99.642% is achieved for digit recognition, with the model using ‘RMSprop’, at a learning rate of 0.001, whereas the highest detection accuracy for alphabet recognition is 99.563%, which is obtained with the proposed model using ‘ADAM’ optimizer at a learning rate of 0.00001. The macro F1 and weighted F1 scores for the best two models are 0.998, 0.997:0.992, and 0.996, respectively, for digit and alphabet recognition.
AB - Neural networks have made big strides in image classification. Convolutional neural networks (CNN) work successfully to run neural networks on direct images. Handwritten character recognition (HCR) is now a very powerful tool to detect traffic signals, translate language, and extract information from documents, etc. Although handwritten character recognition technology is in use in the industry, present accuracy is not outstanding, which compromises both performance and usability. Thus, the character recognition technologies in use are still not very reliable and need further improvement to be extensively deployed for serious and reliable tasks. On this account, characters of the English alphabet and digit recognition are performed by proposing a custom-tailored CNN model with two different datasets of handwritten images, i.e., Kaggle and MNIST, respectively, which are lightweight but achieve higher accuracies than state-of-the-art models. The best two models from the total of twelve designed are proposed by altering hyper-parameters to observe which models provide the best accuracy for which dataset. In addition, the classification reports (CRs) of these two proposed models are extensively investigated considering the performance matrices, such as precision, recall, specificity, and F1 score, which are obtained from the developed confusion matrix (CM). To simulate a practical scenario, the dataset is kept unbalanced and three more averages for the F measurement (micro, macro, and weighted) are calculated, which facilitates better understanding of the performances of the models. The highest accuracy of 99.642% is achieved for digit recognition, with the model using ‘RMSprop’, at a learning rate of 0.001, whereas the highest detection accuracy for alphabet recognition is 99.563%, which is obtained with the proposed model using ‘ADAM’ optimizer at a learning rate of 0.00001. The macro F1 and weighted F1 scores for the best two models are 0.998, 0.997:0.992, and 0.996, respectively, for digit and alphabet recognition.
KW - English alphabet recognition
KW - English character recognition
KW - convolutional neural networks (CNNs)
KW - deep learning in character recognition
KW - digit recognition
KW - handwritten character recognition
UR - http://www.scopus.com/inward/record.url?scp=85129220475&partnerID=8YFLogxK
U2 - 10.3390/a15040129
DO - 10.3390/a15040129
M3 - Article
AN - SCOPUS:85129220475
SN - 1999-4893
VL - 15
JO - Algorithms
JF - Algorithms
IS - 4
M1 - 129
ER -