DASK: Driving-Assisted Secret Key Establishment

Edwin Yang, Song Fang, Dakun Shen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Low-cost and easily obtained Global Navigation Satellite System (e.g., GPS) receivers are broadly embedded into various devices for providing location information. In this work, we develop a secret key establishment by utilizing the driving data obtained from GPS. Those data may exhibit randomness as the driver may alternatively step on the accelerator and brake pedals from time to time with varying force in order to adapt to the road traffic during driving. A driving vehicle provides a physically secure boundary as the devices co-located within the vehicle can observe common GPS data, as opposed to devices that do not experience the trip. We implement this key establishment in a real-world environment on top of off-the-shelf GPS-equipped devices as well as widely deployed GPS modules each connected with Raspberry Pi. Extensive experimental results show that when a user drives around 1.36 km for 1.32 minutes on average under moderate traffic conditions, two legitimate GPS-equipped devices in the vehicle can successfully establish a 128-bit secret key. Meanwhile, an attacker following the target vehicle is unable to establish a secret key with the legitimate devices.

Original languageEnglish
Title of host publication2022 IEEE Conference on Communications and Network Security, CNS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages73-81
Number of pages9
ISBN (Electronic)9781665462556
DOIs
StatePublished - 2022
Event2022 IEEE Conference on Communications and Network Security, CNS 2022 - Austin, United States
Duration: Oct 3 2022Oct 5 2022

Publication series

Name2022 IEEE Conference on Communications and Network Security, CNS 2022

Conference

Conference2022 IEEE Conference on Communications and Network Security, CNS 2022
Country/TerritoryUnited States
CityAustin
Period10/3/2210/5/22

Fingerprint

Dive into the research topics of 'DASK: Driving-Assisted Secret Key Establishment'. Together they form a unique fingerprint.

Cite this