Double resonant enhancement in the neutrinoless double-electron capture of Pt 190

M. Eibach, G. Bollen, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, A. A. Valverde

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Background: The observation of neutrinoless double-β transitions would indicate physics beyond the standard model as the lepton number conservation is violated. For a complete degeneracy in the energy of the initial and final states, the neutrinoless double-electron capture is resonantly enhanced. This shortens the half-life to similar orders of magnitude as the neutrinoless double-β decay and expands the set of nuclei for the search of neutrinoless double-β transitions as the observation of either process would be equally likely. Purpose: To clearly identify transitions that are resonantly enhanced, among other parameters the total energy of the decay, needs to be measured very precisely. Of the 12 initially identified candidates, the last remaining decay without a precise was Pt190(0ν)Os190. Method: The value was determined with the Penning trap mass spectrometer LEBIT by measuring the ratio of the cyclotron frequencies of Pt+190 and Os+190 in a 9.4-T superconducting magnet. Result: The value was determined to be 1401.57(47) keV with an uncertainty reduction of an order of magnitude compared to its previously known value. The absolute value is shifted by 17.17(623) keV relative to the previously accepted one. Furthermore, the mass value of Pt190 was found to be shifted by more than three standard deviations. In addition we improved the mass values for Os186,190 and Pt194. Conclusion: Transitions to the two nuclear excited states of Os190 with 1326.9(5) and 1387.00(2) keV energy were identified to be resonantly enhanced within a 1σ uncertainty. The significantly reduced uncertainty of confirmed the potential for a resonantly enhanced transition.

Original languageEnglish
Article number015502
JournalPhysical Review C
Volume94
Issue number1
DOIs
StatePublished - Jul 14 2016

Fingerprint

Dive into the research topics of 'Double resonant enhancement in the neutrinoless double-electron capture of Pt 190'. Together they form a unique fingerprint.

Cite this