Effects of stress and aging on ribonucleoprotein assembly and function in the germ line

Research output: Contribution to journalReview articlepeer-review

14 Scopus citations

Abstract

In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality.

Original languageEnglish
Pages (from-to)231-246
Number of pages16
JournalWiley Interdisciplinary Reviews: RNA
Volume5
Issue number2
DOIs
StatePublished - Mar 2014

Fingerprint

Dive into the research topics of 'Effects of stress and aging on ribonucleoprotein assembly and function in the germ line'. Together they form a unique fingerprint.

Cite this