Abstract
TiO2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell-material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference.
Original language | English |
---|---|
Pages (from-to) | 160-168 |
Number of pages | 9 |
Journal | Materials Science and Engineering C |
Volume | 58 |
DOIs | |
State | Published - Jan 1 2016 |
Keywords
- Electrochemical
- Impedance spectroscopy
- Nanotubes
- Osteoblast
- Potentiodynamic