Enhancement of specific heat of ternary nitrate (LiNO3-NaNO3-KNO3) salt by doping with SiO2 nanoparticles for solar thermal energy storage

Joohyun Seo, Donghyun Shin

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

An enhancement of specific heat in a ternary molten nitrate salt eutectic doped with nanoparticles at a minute concentration is reported. SiO2 nanoparticles, whose nominal size is 60 nm, were doped into a ternary nitrate molten salt eutectic (LiNO3-NaNO3-KNO3) at 1% concentration by weight. A modulated differential scanning calorimeter was employed to characterise the specific heat of the eutectic mixture. According to a density weighted specific heat model, the effective specific heat of the mixture should not significantly change since the concentration of the nanoparticles is very small. However, the specific heat of the mixture of eutectic and nanoparticles was enhanced by 13%. From a subsequent material characterisation, a large amount of fractal-like nanostructure formation by the eutectic near embedded SiO2 nanoparticles was observed. The nanostructure has a very large specific surface area as have the embedded SiO2 nanoparticles. This can significantly amplify the effect of surface energy on the effective specific heat and is thus responsible for the enhanced specific heat of the mixture. Using the ternary molten salt eutectic with enhanced specific heat for thermal energy storage can significantly increase the energy storage efficiency and thus reduce the cost of electricity in a concentrated solar power system.

Original languageEnglish
Pages (from-to)817-820
Number of pages4
JournalMicro and Nano Letters
Volume9
Issue number11
DOIs
StatePublished - Nov 1 2014

Fingerprint

Dive into the research topics of 'Enhancement of specific heat of ternary nitrate (LiNO3-NaNO3-KNO3) salt by doping with SiO2 nanoparticles for solar thermal energy storage'. Together they form a unique fingerprint.

Cite this