Abstract
The influence of land surface characteristics and climate conditions on the source, quantity, quality, and timing of dissolved organic carbon (DOC) fluxes to coastal waters is not well understood. The significant correlation between DOC and chromophoric dissolved organic matter (CDOM) leads to an increasing need of CDOM monitoring for understanding the DOC land-water dynamics. This study is to report the results of using hyperspectral in-situ data and satellite images to estimate riverine CDOM from rivers to oceans and Great Lakes. A major research goal is to demonstrate that advancement of hyperspectral and high spatial resolution remote sensing technology is vital to the study of interactive processes between terrestrial ecosystems and aquatic environments. Our research results confirm that hyperspectral remote sensing is effective in extracting riverine CDOM loading.
Original language | English |
---|---|
Pages | 2040-2042 |
Number of pages | 3 |
DOIs | |
State | Published - 2012 |
Event | 2012 32nd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012 - Munich, Germany Duration: Jul 22 2012 → Jul 27 2012 |
Conference
Conference | 2012 32nd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 07/22/12 → 07/27/12 |
Keywords
- Chromophoric dissolved organic matter (CDOM)
- Coastal Environmental
- EO-1 Hyperion
- Hyperspectral data
- Ocean color
- QAA-CDOM
- dissolved organic carbon (DOC)