TY - JOUR
T1 - Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations
AU - Nassar, Ray
AU - Baxter, Martin A
AU - Zheng, Tao
N1 - Funding Information:
We thank NASA and the OCO-2 project for making OCO-2 data available for this work. We thank NOAA for making the NCEP/CFSR and CarbonTracker data available for the public. We thank the WRF-Chem development team for making the code available for the public. We thank Dr Chin-I Cheng of the Central Michigan University Statistical Consulting Center for her helpful discussion. This work was partially supported by a Central Michigan University Research Incentive Fund. This is contribution 124 of the Central Michigan University Institute for Great Lakes Research.
Publisher Copyright:
© Her Majesty, the Queen in Right of Canada, as represented by the Minister of the Environment, 2019.
PY - 2019/7/22
Y1 - 2019/7/22
N2 - Anthropogenic CO2 emission from fossil fuel combustion has major impacts on the global climate. The Orbiting Carbon Observatory 2 (OCO-2) observations have previously been used to estimate individual power plant emissions with a Gaussian plume model assuming constant wind fields. The present work assesses the feasibility of estimating power plant CO2 emission using high resolution chemistry transport model simulations with OCO-2 observation data. In the new framework, 1.33 km Weather Research and Forecasting-Chem (WRF)-Chem simulation results are used to calculate the Jacobian matrix, which is then used with the OCO-2 XCO2 data to obtain power plant daily mean emission rates, through a maximum likelihood estimation. We applied the framework to the seven OCO-2 observations of near mid-to-large coal burning power plants identified in Nassar et al (2017 Geophys. Res. Lett. 44, 10045–53). Our estimation results closely match the reported emission rates at the Westar power plant (Kansas, USA), with a reported value of 26.67 ktCO2/day, and our estimated value at 25.82–26.47 ktCO2/day using OCO-2 v8 data, and 22.09–22.80 ktCO2/day using v9 data. At Ghent, KY, USA, our estimations using three versions (v7, v8, and v9) range from 9.84–20.40 ktCO2/day, which are substantially lower than the reported value (29.17 ktCO2/day). We attribute this difference to diminished WRF-Chem wind field simulation accuracy. The results from the seven cases indicate that accurate estimation requires accurate meteorological simulations and high quality XCO2 data. In addition, the strength and orientation (relative to the OCO-2 ground track) of the XCO2 enhancement are important for accurate and reliable estimation. Compared with the Gaussian plume model based approach, the high resolution WRF-Chem simulation based approach provides a framework for addressing varying wind fields, and possible expansion to city level emission estimation.
AB - Anthropogenic CO2 emission from fossil fuel combustion has major impacts on the global climate. The Orbiting Carbon Observatory 2 (OCO-2) observations have previously been used to estimate individual power plant emissions with a Gaussian plume model assuming constant wind fields. The present work assesses the feasibility of estimating power plant CO2 emission using high resolution chemistry transport model simulations with OCO-2 observation data. In the new framework, 1.33 km Weather Research and Forecasting-Chem (WRF)-Chem simulation results are used to calculate the Jacobian matrix, which is then used with the OCO-2 XCO2 data to obtain power plant daily mean emission rates, through a maximum likelihood estimation. We applied the framework to the seven OCO-2 observations of near mid-to-large coal burning power plants identified in Nassar et al (2017 Geophys. Res. Lett. 44, 10045–53). Our estimation results closely match the reported emission rates at the Westar power plant (Kansas, USA), with a reported value of 26.67 ktCO2/day, and our estimated value at 25.82–26.47 ktCO2/day using OCO-2 v8 data, and 22.09–22.80 ktCO2/day using v9 data. At Ghent, KY, USA, our estimations using three versions (v7, v8, and v9) range from 9.84–20.40 ktCO2/day, which are substantially lower than the reported value (29.17 ktCO2/day). We attribute this difference to diminished WRF-Chem wind field simulation accuracy. The results from the seven cases indicate that accurate estimation requires accurate meteorological simulations and high quality XCO2 data. In addition, the strength and orientation (relative to the OCO-2 ground track) of the XCO2 enhancement are important for accurate and reliable estimation. Compared with the Gaussian plume model based approach, the high resolution WRF-Chem simulation based approach provides a framework for addressing varying wind fields, and possible expansion to city level emission estimation.
UR - https://iopscience.iop.org/article/10.1088/1748-9326/ab25ae
M3 - Article
AN - SCOPUS:85072690987
SN - 1748-9318
VL - 14
JO - Environmental Research Letters
JF - Environmental Research Letters
ER -