TY - GEN
T1 - Evaluation of Haptic modules for training in undergraduate mechanics
AU - Karadogan, Ernur
AU - Williams, Robert L.
AU - Karadogan, Figen
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - This article reports the evaluation results of the software modules we are developing to augment teaching and learning in standard required undergraduate engineering mechanics courses. Using these modules, students can change parameters, predict answers, compare outcomes, interact with animations, and "feel" the results using a force feedback joystick. The overall system aims to increase teaching and learning effectiveness by rendering the concepts compelling, fun, and engaging. Three software modules in Dynamics were evaluated by a sample of the target population, 40 undergraduate engineering students who were enrolled in a sophomore-level Dynamics course during the evaluation. Students showed significant preference in that the modules would increase their interest in Dynamics subject and their engagement in the Dynamics course that they were enrolled at the time of the evaluation. Evaluation results also showed significant difference in preference in that the modules would improve students' both conceptual understanding of the Dynamics subjects and problem-solving skills. Tactile learners believed that the modules would improve their conceptual understanding of Dynamics subjects more than the visual learners. 97.5% of the students were willing to use the software again in the future. 92.5% of the students believed that the incorporation of this software to the instruction of Dynamics would be beneficial to their learning.
AB - This article reports the evaluation results of the software modules we are developing to augment teaching and learning in standard required undergraduate engineering mechanics courses. Using these modules, students can change parameters, predict answers, compare outcomes, interact with animations, and "feel" the results using a force feedback joystick. The overall system aims to increase teaching and learning effectiveness by rendering the concepts compelling, fun, and engaging. Three software modules in Dynamics were evaluated by a sample of the target population, 40 undergraduate engineering students who were enrolled in a sophomore-level Dynamics course during the evaluation. Students showed significant preference in that the modules would increase their interest in Dynamics subject and their engagement in the Dynamics course that they were enrolled at the time of the evaluation. Evaluation results also showed significant difference in preference in that the modules would improve students' both conceptual understanding of the Dynamics subjects and problem-solving skills. Tactile learners believed that the modules would improve their conceptual understanding of Dynamics subjects more than the visual learners. 97.5% of the students were willing to use the software again in the future. 92.5% of the students believed that the incorporation of this software to the instruction of Dynamics would be beneficial to their learning.
KW - Dynamics
KW - Engineering mechanics courses
KW - Force feedback
KW - Haptics
KW - Undergraduate engineering
KW - User evaluation
KW - Virtual reality
UR - http://www.scopus.com/inward/record.url?scp=84979031693&partnerID=8YFLogxK
U2 - 10.1115/DETC2015-46060
DO - 10.1115/DETC2015-46060
M3 - Conference contribution
AN - SCOPUS:84979031693
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 39th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Y2 - 2 August 2015 through 5 August 2015
ER -