Exploring and enhancing the accuracy of interior-scaled Perdew-Zunger self-interaction correction

Puskar Bhattarai, Biswajit Santra, Kamal Wagle, Yoh Yamamoto, Rajendra R. Zope, Adrienn Ruzsinszky, Koblar A. Jackson, John P. Perdew

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The Perdew-Zunger self-interaction correction (PZ-SIC) improves the performance of density functional approximations for the properties that involve significant self-interaction error (SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by local scaling self-interaction correction (LSIC) of the PZ-SIC to the local spin density approximation (LSDA). Here, we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of the atomic number Z in the asymptotic expansion of the exchange-correlation (xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator zσ, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to the LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA), and almost close to the strongly constrained and appropriately normed (SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled down SIC to functionals beyond the LSDA requires a gauge transformation of the functional's energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.

Original languageEnglish
Article number094105
JournalJournal of Chemical Physics
Volume154
Issue number9
DOIs
StatePublished - Mar 7 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Exploring and enhancing the accuracy of interior-scaled Perdew-Zunger self-interaction correction'. Together they form a unique fingerprint.

Cite this