TY - JOUR
T1 - Fermi-Löwdin Orbital Self-interaction correction of adsorption energies on transition metal ions
AU - Withanage, Kushantha P. K.
AU - Peralta, Juan Ernesto
AU - Jackson, Koblar Alan
N1 - Funding Information:
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of the Computational Chemical Sciences Program, under Award No. DESC0018331. The calculations were carried out at the Institute for Cyber-Enabled Research at Michigan State University on compute nodes provided by Central Michigan University.
Publisher Copyright:
© 2022 Author(s).
PY - 2022
Y1 - 2022
N2 - Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.
AB - Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.
M3 - Article
VL - 156
SP - 134102
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
ER -