Ferroelectric order in individual nanometre-scale crystals

Mark J. Polking, Myung Geun Han, Amin Yourdkhani, Valeri Petkov, Christian F. Kisielowski, Vyacheslav V. Volkov, Yimei Zhu, Gabriel Caruntu, A. Paul Alivisatos, Ramamoorthy Ramesh

Research output: Contribution to journalArticlepeer-review

265 Scopus citations


Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ∼5 nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in 2 memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.

Original languageEnglish
Pages (from-to)700-709
Number of pages10
JournalNature Materials
Issue number8
StatePublished - Aug 2012


Dive into the research topics of 'Ferroelectric order in individual nanometre-scale crystals'. Together they form a unique fingerprint.

Cite this