First Penning trap mass measurement of Ca 36

J. Surbrook, G. Bollen, M. Brodeur, A. Hamaker, D. Pérez-Loureiro, D. Puentes, C. Nicoloff, M. Redshaw, R. Ringle, S. Schwarz, C. S. Sumithrarachchi, L. J. Sun, A. A. Valverde, A. C.C. Villari, C. Wrede, I. T. Yandow

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Background: Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The generalized IMME (GIMME) is a novel microscopic interaction theory that predicts an extension to the quadratic form of the IMME. Only the A=20,32 T=2 quintets have the exotic Tz=-2 member ground state mass determined to high precision by Penning trap mass spectrometry. Purpose: We aim to establish A=36 as the third T=2 isobaric quintet with the Tz=-2 member ground state mass measured by Penning trap mass spectrometry and provide the first test of the predictive power of the GIMME. Method: A radioactive beam of neutron-deficient Ca36 was produced by projectile fragmentation at the National Superconducting Cyclotron Laboratory. The beam was thermalized and the masses of Ca+36 and Ca2+36 were measured by the time-of-flight ion cyclotron resonance method in the LEBIT 9.4 T Penning trap. Results: We measure the mass excess of Ca36 to be ME=-6483.6(56) keV, an improvement in precision by a factor of 6 over the literature value. The new datum is considered together with evaluated nuclear data on the A=36, T=2 quintet. We find agreement with the quadratic form of the IMME given by isospin symmetry, but only coarse qualitative agreement with predictions of the GIMME. Conclusion: A total of three isobaric quintets have their most exotic members measured by Penning trap mass spectrometry. The GIMME predictions in the T=2 quintet appear to break down for A=32 and greater.

Original languageEnglish
Article number014323
JournalPhysical Review C
Issue number1
StatePublished - Jan 2021


Dive into the research topics of 'First Penning trap mass measurement of Ca 36'. Together they form a unique fingerprint.

Cite this