Generalized logistic distribution and its regression model

Mohammad A. Aljarrah, Felix Famoye, Carl Lee

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A new generalized asymmetric logistic distribution is defined. In some cases, existing three parameter distributions provide poor fit to heavy tailed data sets. The proposed new distribution consists of only three parameters and is shown to fit a much wider range of heavy left and right tailed data when compared with various existing distributions. The new generalized distribution has logistic, maximum and minimum Gumbel distributions as sub-models. Some properties of the new distribution including mode, skewness, kurtosis, hazard function, and moments are studied. We propose the method of maximum likelihood to estimate the parameters and assess the finite sample size performance of the method. A generalized logistic regression model, based on the new distribution, is presented. Logistic-log-logistic regression, Weibull-extreme value regression and log-Fréchet regression are special cases of the generalized logistic regression model. The model is applied to fit failure time of a new insulation technique and the survival of a heart transplant study.

Original languageEnglish
Article number7
JournalJournal of Statistical Distributions and Applications
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2020

Keywords

  • Beta-family
  • Censored data
  • Hazard function
  • Moments
  • Symmetric distribution

Fingerprint

Dive into the research topics of 'Generalized logistic distribution and its regression model'. Together they form a unique fingerprint.

Cite this