Learning NP-Hard Multi-Agent Assignment Planning using GNN: Inference on a Random Graph and Provable Auction-Fitted Q-learning

Hyunwook Kang, Jinkyoo Park, Taehwan Kwon, James R. Morrison

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper explores the possibility of near-optimally solving multi-agent, multi-task NP-hard planning problems with time-dependent rewards using a learning-based algorithm. In particular, we consider a class of robot/machine scheduling problems called the multi-robot reward collection problem (MRRC). Such MRRC problems well model ride-sharing, pickup-and-delivery, and a variety of related problems. In representing the MRRC problem as a sequential decision-making problem, we observe that each state can be represented as an extension of probabilistic graphical models (PGMs), which we refer to as random PGMs. We then develop a mean-field inference method for random PGMs. We then propose (1) an order-transferable Q-function estimator and (2) an order-transferability-enabled auction to select a joint assignment in polynomial-time. These result in a reinforcement learning framework with at least 1−1/e optimality. Experimental results on solving MRRC problems highlight the near-optimality and transferability of the proposed methods. We also consider identical parallel machine scheduling problems (IPMS) and minimax multiple traveling salesman problems (minimax-mTSP).

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Externally publishedYes
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

Fingerprint

Dive into the research topics of 'Learning NP-Hard Multi-Agent Assignment Planning using GNN: Inference on a Random Graph and Provable Auction-Fitted Q-learning'. Together they form a unique fingerprint.

Cite this