Least squares congealing for unsupervised alignment of images

Mark Cox, Sridha Sridharan, Simon Lucey, Jeffrey Cohn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

69 Scopus citations

Abstract

In this paper, we present an approach we refer to as "least squares congealing" which provides a solution to the problem of aligning an ensemble of images in an unsupervised manner. Our approach circumvents many of the limitations existing in the canonical "congealing" algorithm. Specifically, we present an algorithm that:- (i) is able to simultaneously, rather than sequentially, estimate warp parameter updates, (ii) exhibits fast convergence and (iii) requires no pre-defined step size. We present alignment results which show an improvement in performance for the removal of unwanted spatial variation when compared with the related work of Learned-Miller on two datasets, the MNIST hand written digit database and the MultiPIE face database.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: Jun 23 2008Jun 28 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Conference

Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period06/23/0806/28/08

Cite this