Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus

Mallary C. Greenlee-Wacker, Silvie Kremserová, William M. Nauseef

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes infections associated with extensive tissue damage and necrosis. In vitro, human neutrophils fed CA-MRSA lyse by an unknown mechanism that is inhibited by necrostatin-1, an allosteric inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK-1). RIPK-1 figures prominently in necroptosis, a specific form of programmed cell death dependent on RIPK-1, RIPK-3, and the mixed-lineage kinase-like protein (MLKL). We previously reported that necrostatin-1 inhibits lysis of human neutrophils fed CAMRSA and attributed the process to necroptosis. We now extend our studies to examine additional components in the programmed cell death pathway to test the hypothesis that neutrophils fed CA-MRSA undergo necroptosis. Lysis of neutrophils fed CA-MRSA was independent of tumor necrosis factor a, active RIPK-1, and MLKL, but dependent on active RIPK-3. Human neutrophils fed CA-MRSA lacked phosphorylated RIPK-1, as well as phosphorylated or oligomerized MLKL. Neutrophils fed CA-MRSA possessed cytoplasmic complexes that included inactive caspase 8, RIPK-1, and RIPK-3, and the composition of the complex remained stable over time. Together, these data suggest that neutrophils fed CA-MRSA underwent a novel form of lytic programmed cell death via a mechanismthat required RIPK-3 activity, but not active RIPK-1 or MLKL, and therefore was distinct from necroptosis. Targeting the molecular pathways that culminate in lysis of neutrophils during CA-MRSA infection may serve as a novel therapeutic intervention to limit the associated tissue damage.

Original languageEnglish
Pages (from-to)3237-3244
Number of pages8
JournalBlood
Volume129
Issue number24
DOIs
StatePublished - Jun 15 2017

Fingerprint

Dive into the research topics of 'Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus'. Together they form a unique fingerprint.

Cite this