Magnetic transitions in disordered GdAl2

D. S. Williams, P. M. Shand, T. M. Pekarek, R. Skomski, V. Petkov, D. L. Leslie-Pelecky

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


The role of disorder in magnetic ordering transitions is investigated using mechanically milled GdAl2. Crystalline GdAl2 is a ferromagnet while amorphous GdAl2 is a spin glass. Nanostructured GdAl2 shows a paramagnetic-to-ferromagnetic transition and glassy behavior, with the temperature and magnitude of each transition dependent on the degree and type of disorder. Disorder is parametrized by a Gaussian distribution of Curie temperatures TC with mean TC and breadth ΔTC. A nonzero coercivity is observed at temperatures more than 20 K above the highest TC of any known Gd-Al phase; however, the coercivity decreases with decreasing temperature over the same temperature range where the GdAl2 grains ferromagnetically order. Models for the anomalous coercivity behavior are proposed and evaluated for their ability to explain the origin of the low-temperature glassy magnetization peak.

Original languageEnglish
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number21
StatePublished - Dec 3 2003


Dive into the research topics of 'Magnetic transitions in disordered GdAl2'. Together they form a unique fingerprint.

Cite this