TY - JOUR
T1 - Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery
AU - Torbick, Nathan
AU - Hession, Sarah
AU - Hagen, Stephen
AU - Wiangwang, Narumon
AU - Becker, Brian
AU - Qi, Jiaguo
N1 - Funding Information:
Funding for this research was provided in part by the Great Lakes Fisheries Trust and the National Institutes of Health.
PY - 2013/11
Y1 - 2013/11
N2 - The number, size, and distribution of inland freshwater lakes present a challenge for traditional water-quality assessment due to the time, cost, and logistical constraints of field sampling and laboratory analyses. To overcome this challenge, Landsat imagery has been used as an effective tool to assess basic water-quality indicators, such as Secchi depth (SD), over a large region or to map more advanced lake attributes, such as cyanobacteria, for a single waterbody. The overarching objective of this research application was to evaluate Landsat Thematic Mapper (TM) for mapping nine water-quality metrics over a large region and to identify hot spots of potential risk. The second objective was to evaluate the addition of landscape pattern metrics to test potential improvements in mapping lake attributes and to understand drivers of lake water quality in this region. Field-level in situ water-quality measurements were collected across diverse lakes (n = 42) within the Lower Peninsula of Michigan. A multicriteria statistical approach was executed to map lake water quality that considered variable importance, model complexity, and uncertainty. Overall, band ratio radiance models performed well (R2 = 0.65-0.81) for mapping SD, chlorophyll-a, green biovolume, total phosphorus (TP), and total nitrogen (TN) with weaker (R2 = 0.37) ability to map total suspended solids (TSS) and cyanobacteria levels. In this application, Landsat TM and pattern metrics showed poor ability to accurately map non-purgable organic carbon (NPOC) and diatom biovolume, likely due to a combination of gaps in temporal overpass and field sampling and lack of signal sensitivity within broad spectral channels of Landsat TM. The composition and configuration of croplands, urban, and wetland patches across the landscape were found to be moderate predictors of lake water quality that can complement lake remote-sensing data. Of the 4071 lakes, over 4 ha in the Lower Peninsula, approximately two-thirds, were identified as mesotrophic (n = 2715). This application highlights how an operational tool might support lake decision-making or assessment protocols to identify hot spots of potential risk.
AB - The number, size, and distribution of inland freshwater lakes present a challenge for traditional water-quality assessment due to the time, cost, and logistical constraints of field sampling and laboratory analyses. To overcome this challenge, Landsat imagery has been used as an effective tool to assess basic water-quality indicators, such as Secchi depth (SD), over a large region or to map more advanced lake attributes, such as cyanobacteria, for a single waterbody. The overarching objective of this research application was to evaluate Landsat Thematic Mapper (TM) for mapping nine water-quality metrics over a large region and to identify hot spots of potential risk. The second objective was to evaluate the addition of landscape pattern metrics to test potential improvements in mapping lake attributes and to understand drivers of lake water quality in this region. Field-level in situ water-quality measurements were collected across diverse lakes (n = 42) within the Lower Peninsula of Michigan. A multicriteria statistical approach was executed to map lake water quality that considered variable importance, model complexity, and uncertainty. Overall, band ratio radiance models performed well (R2 = 0.65-0.81) for mapping SD, chlorophyll-a, green biovolume, total phosphorus (TP), and total nitrogen (TN) with weaker (R2 = 0.37) ability to map total suspended solids (TSS) and cyanobacteria levels. In this application, Landsat TM and pattern metrics showed poor ability to accurately map non-purgable organic carbon (NPOC) and diatom biovolume, likely due to a combination of gaps in temporal overpass and field sampling and lack of signal sensitivity within broad spectral channels of Landsat TM. The composition and configuration of croplands, urban, and wetland patches across the landscape were found to be moderate predictors of lake water quality that can complement lake remote-sensing data. Of the 4071 lakes, over 4 ha in the Lower Peninsula, approximately two-thirds, were identified as mesotrophic (n = 2715). This application highlights how an operational tool might support lake decision-making or assessment protocols to identify hot spots of potential risk.
UR - http://www.scopus.com/inward/record.url?scp=84884490744&partnerID=8YFLogxK
U2 - 10.1080/01431161.2013.822602
DO - 10.1080/01431161.2013.822602
M3 - Article
AN - SCOPUS:84884490744
SN - 0143-1161
VL - 34
SP - 7607
EP - 7624
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 21
ER -