TY - JOUR
T1 - Mg2+ binding to tRNA revisited
T2 - The nonlinear Poisson-Boltzmann model
AU - Misra, Vinod K.
AU - Draper, David E.
N1 - Funding Information:
We are very grateful to Dr Kim Sharp for his help in programming the finite difference NLPB equation for mixed salts. We also thank Dr Barry Honig for kindly providing the GRASP software package. Vinod K. Misra is a Howard Hughes Medical Institute Physician Postdoctoral Fellow. This work was supported by NIH grant GM58545.
PY - 2000/6/9
Y1 - 2000/6/9
N2 - Our current understanding of Mg2+ binding to RNA, in both thermodynamic and structural terms, is largely based on classical studies of transfer RNAs. Based on these studies, it is clear that magnesium ions are crucial for stabilizing the folded structure of tRNA. We present here a rigorous theoretical model based on the nonlinear Poisson-Boltzmann (NLPB) equation for understanding Mg2+ binding to yeast tRNA(Phe). We use this model to interpret a variety of experimental Mg2+ binding data. In particular, we find that the NLPB equation provides a remarkably accurate description of both the overall stoichiometry and the free energy of Mg2+ binding to yeast tRNA(Phe) without any fitted parameters. In addition, the model accurately describes the interaction of Mg2+ with localized regions of the RNA as determined by the pK(a) shift of differently bound fluorophores. In each case, we find that the model also reproduces the univalent salt-dependence and the anticooperativity of Mg2+ binding. Our results lead us to a thermodynamic description of Mg2+ binding to yeast tRNA(Phe) based on the NLPB equation. In this model, Mg2+ binding is simply explained by an ensemble of ions distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. It appears that the entire ensemble of electrostatically bound ions superficially mimics a few strongly coordinated ions. In this regard, we find that Mg2+ stabilizes the tertiary structure of yeast tRNA(Phe) in part by accumulating in regions of high negative electrostatic potential. These regions of Mg2+ localization correspond to bound ions that are observed in the X-ray crystallographic structures of yeast tRNA(Phe). Based on our results and the available thermodynamic data, there is no evidence that specifically coordinated Mg ions have a significant role in stabilizing the native tertiary structure of yeast tRNA(Phe) in solution. (C) 2000 Academic Press.
AB - Our current understanding of Mg2+ binding to RNA, in both thermodynamic and structural terms, is largely based on classical studies of transfer RNAs. Based on these studies, it is clear that magnesium ions are crucial for stabilizing the folded structure of tRNA. We present here a rigorous theoretical model based on the nonlinear Poisson-Boltzmann (NLPB) equation for understanding Mg2+ binding to yeast tRNA(Phe). We use this model to interpret a variety of experimental Mg2+ binding data. In particular, we find that the NLPB equation provides a remarkably accurate description of both the overall stoichiometry and the free energy of Mg2+ binding to yeast tRNA(Phe) without any fitted parameters. In addition, the model accurately describes the interaction of Mg2+ with localized regions of the RNA as determined by the pK(a) shift of differently bound fluorophores. In each case, we find that the model also reproduces the univalent salt-dependence and the anticooperativity of Mg2+ binding. Our results lead us to a thermodynamic description of Mg2+ binding to yeast tRNA(Phe) based on the NLPB equation. In this model, Mg2+ binding is simply explained by an ensemble of ions distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. It appears that the entire ensemble of electrostatically bound ions superficially mimics a few strongly coordinated ions. In this regard, we find that Mg2+ stabilizes the tertiary structure of yeast tRNA(Phe) in part by accumulating in regions of high negative electrostatic potential. These regions of Mg2+ localization correspond to bound ions that are observed in the X-ray crystallographic structures of yeast tRNA(Phe). Based on our results and the available thermodynamic data, there is no evidence that specifically coordinated Mg ions have a significant role in stabilizing the native tertiary structure of yeast tRNA(Phe) in solution. (C) 2000 Academic Press.
KW - Electrostatics
KW - Magnesium
KW - Poisson-Boltzmann
KW - RNA folding
KW - Transfer RNA
UR - http://www.scopus.com/inward/record.url?scp=0034625314&partnerID=8YFLogxK
U2 - 10.1006/jmbi.2000.3769
DO - 10.1006/jmbi.2000.3769
M3 - Article
C2 - 10835286
AN - SCOPUS:0034625314
VL - 299
SP - 813
EP - 825
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
SN - 0022-2836
IS - 3
ER -