Microsatellite analysis of genetic diversity and genetic structure of the Chinese freshwater mussel Solenaia carinata (Bivalvia: Unionidae)

Tingting Sun, Xiongjun Liu, Chunhua Zhou, Hongxiu Ding, Wenjing Yang, David T. Zanatta, Shan Ouyang, Xiaoping Wu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The freshwater mussels (Unionidae) in the Yangtze River basin of China are among the most diverse assemblages on Earth. Freshwater mussels provide valuable ecosystem services (e.g. natural water filtration) and economic value (shell, pearls, and food), but are experiencing global declines as a result of pollution, habitat alteration, and overharvest. Despite the diversity and value of freshwater mussels in the Yangtze River basin, relatively little is known about the biology of the many species endemic to the region. Solenaia carinata is an endemic and potentially imperilled freshwater mussel (Bivalvia: Unionidae) in China that is distributed in a single major tributary of the middle Yangtze; the Poyang Lake basin in Jiangxi Province. This study represents the first analyses of the genetic diversity and population genetic structure of S. carinata. Solenaia carinata specimens (n=64) were collected from three sites in large tributary rivers of Poyang Lake. Using 19 polymorphic microsatellite markers, the results showed that S. carinata had a moderate level of genetic diversity (PIC ranged from 0.464 to 0.484), limited evidence of a recent genetic bottleneck, little genetic differentiation (FST ranged from 0.021 to 0.045), high levels of gene flow (Nm ranged from 3.675 to 33.227) and limited genetic structure among the three sampling locations. Given that S. carinata inhabits a highly interconnected system of large rivers and lakes, the results of low differentiation and high gene flow among geographically proximate sampling locations (sites separated by between 8 and 20 km of water) are not surprising. The results indicate that specimens can be used and moved from anywhere across the distribution of S. carinata for the purposes of captive propogation and translocation.

Original languageEnglish
Pages (from-to)37-44
Number of pages8
JournalAquatic Conservation: Marine and Freshwater Ecosystems
Volume28
Issue number1
DOIs
StatePublished - Feb 1 2018

Keywords

  • Poyang Lake
  • Solenaia carinata
  • Unionidae
  • Yangtze River
  • genetic diversity
  • genetic structure

Fingerprint

Dive into the research topics of 'Microsatellite analysis of genetic diversity and genetic structure of the Chinese freshwater mussel Solenaia carinata (Bivalvia: Unionidae)'. Together they form a unique fingerprint.

Cite this