Miniaturized Devices for Bioluminescence Imaging in Freely Behaving Animals

Dmitrijs Celinskis, Nina Friedman, Mikhail Koksharov, Jeremy Murphy, Manuel Gomez-Ramirez, David Borton, Nathan Shaner, Ute Hochgeschwender, DIane Lipscombe, Christopher Moore

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In vivo fluorescence miniature microscopy has recently proven a major advance, enabling cellular imaging in freely behaving animals. However, fluorescence imaging suffers from autofluorescence, phototoxicity, photobleaching and non- homogeneous illumination artifacts. These factors limit the quality and time course of data collection. Bioluminescence provides an alternative kind of activity-dependent light indicator. Bioluminescent calcium indicators do not require light input, instead generating photons through chemiluminescence. As such, limitations inherent to the requirement for light presentation are eliminated. Further, bioluminescent indicators also do not require excitation light optics: the removal of these components should make a lighter and lower cost microscope with fewer assembly parts. While there has been significant recent progress in making brighter and faster bioluminescence indicators, the advances in imaging hardware have not yet been realized. A hardware challenge is that despite potentially higher signal-to-noise of bioluminescence, the signal strength is lower than that of fluorescence. An open question we address in this report is whether fluorescent miniature microscopes can be rendered sensitive enough to detect bioluminescence. We demonstrate this possibility in vitro and in vivo by implementing optimizations of the UCLA fluorescent miniscope v3.2. These optimizations yielded a miniscope (BLmini) which is 22% lighter in weight, has 45% fewer components, is up to 58% less expensive, offers up to 15 times stronger signal and is sensitive enough to capture spatiotemporal dynamics of bioluminescence in the brain with a signal-to-noise ratio of 34 dB.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4385-4389
Number of pages5
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period07/20/2007/24/20

Fingerprint

Dive into the research topics of 'Miniaturized Devices for Bioluminescence Imaging in Freely Behaving Animals'. Together they form a unique fingerprint.

Cite this