TY - JOUR
T1 - Most probable number - loop mediated isothermal amplification (MPN-LAMP) for quantifying waterborne pathogens in < 25 min
AU - Ahmad, Farhan
AU - Stedtfeld, Robert D.
AU - Waseem, Hassan
AU - Williams, Maggie R.
AU - Cupples, Alison M.
AU - Tiedje, James M.
AU - Hashsham, Syed A.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - We are reporting a most probable number approach integrated to loop mediated isothermal technique (MPN-LAMP) focusing on Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial cells without nucleic acids extraction. LAMP assays for uidA from E. coli and gelE from E. faecalis were successfully performed directly on cells up to single digit concentration using a commercial real time PCR instrument. Threshold time values of LAMP assays of bacterial cells, heat treated bacterial cells (95 °C for 5 min), and their purified genomic DNA templates were similar, implying that amplification could be achieved directly from bacterial cells at 63 °C. Viability of bacterial cells was confirmed by using propidium monoazide in a LAMP assay with E. faecalis. To check its functionality on a microfluidic platform, MPN-LAMP assays targeting < 10 CFU of bacteria were also translated onto polymeric microchips and monitored by a low-cost fluorescence imaging system. The overall system provided signal-to-noise (SNR) ratios up to 800, analytical sensitivity of < 10 CFU, and time to positivity of about 20 min. MPN-LAMP assays were performed for cell concentrations in the range of 105 CFU to < 10 CFU. MPN values from LAMP assays confirmed that the amplifications were from < 10 CFU. The method described here, applicable directly on cells at 63 °C, eliminates the requirement of complex nucleic acids extraction steps, facilitating the development of sensitive, rapid, low-cost, and field-deployable systems. This rapid MPN-LAMP approach has the potential to replace conventional MPN method for waterborne pathogens.
AB - We are reporting a most probable number approach integrated to loop mediated isothermal technique (MPN-LAMP) focusing on Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial cells without nucleic acids extraction. LAMP assays for uidA from E. coli and gelE from E. faecalis were successfully performed directly on cells up to single digit concentration using a commercial real time PCR instrument. Threshold time values of LAMP assays of bacterial cells, heat treated bacterial cells (95 °C for 5 min), and their purified genomic DNA templates were similar, implying that amplification could be achieved directly from bacterial cells at 63 °C. Viability of bacterial cells was confirmed by using propidium monoazide in a LAMP assay with E. faecalis. To check its functionality on a microfluidic platform, MPN-LAMP assays targeting < 10 CFU of bacteria were also translated onto polymeric microchips and monitored by a low-cost fluorescence imaging system. The overall system provided signal-to-noise (SNR) ratios up to 800, analytical sensitivity of < 10 CFU, and time to positivity of about 20 min. MPN-LAMP assays were performed for cell concentrations in the range of 105 CFU to < 10 CFU. MPN values from LAMP assays confirmed that the amplifications were from < 10 CFU. The method described here, applicable directly on cells at 63 °C, eliminates the requirement of complex nucleic acids extraction steps, facilitating the development of sensitive, rapid, low-cost, and field-deployable systems. This rapid MPN-LAMP approach has the potential to replace conventional MPN method for waterborne pathogens.
KW - Detection limit
KW - Loop-mediated isothermal amplification
KW - Most probable number
KW - Point-of-care diagnostics
KW - Propidium monoazide
UR - http://www.scopus.com/inward/record.url?scp=84995776576&partnerID=8YFLogxK
U2 - 10.1016/j.mimet.2016.11.010
DO - 10.1016/j.mimet.2016.11.010
M3 - Article
C2 - 27856278
AN - SCOPUS:84995776576
SN - 0167-7012
VL - 132
SP - 27
EP - 33
JO - Journal of Microbiological Methods
JF - Journal of Microbiological Methods
ER -