TY - JOUR
T1 - Myocardial conditioning
T2 - Opportunities for clinical translation
AU - Ovize, Michel
AU - Thibault, Hélène
AU - Przyklenk, Karin
PY - 2013/8/2
Y1 - 2013/8/2
N2 - Myocardial conditioning is an endogenous cardioprotective phenomenon that profoundly limits infarct size in experimental models. The current challenge is to translate this paradigm from the laboratory to the clinic. Accordingly, our goal in this review is to provide a critical summary of the progress toward, opportunities for, and caveats to, the successful clinical translation of postconditioning and remote conditioning, the 2 conditioning strategies considered to have the broadest applicability for real-world patient care. In the majority of phase II studies published to date, postconditioning evoked a ≈35% reduction of infarct size in ST-segment-elevation myocardial infarction patients. Essential criteria for the successful implementation of postconditioning include the appropriate choice of patients (ie, those with large risk regions and negligible collateral flow), timely application of the postconditioning stimulus (immediately on reperfusion), together with proper choice of end points (infarct size, with concomitant assessment of risk region). Remote conditioning has been applied in planned ischemic events (including cardiac surgery and elective percutaneous coronary intervention) and in ST-segment-elevation myocardial infarction patients during hospital transport. Controversies with regard to efficacy have emerged, particularly among surgical trials. These disparate outcomes in all likelihood reflect the remarkable heterogeneity within and among studies, together with a deficit in our understanding of the impact of these variations on the infarct-sparing effect of remote conditioning. Ongoing phase III trials will provide critical insight into the future role of postconditioning and remote conditioning as clinically relevant cardioprotective strategies.
AB - Myocardial conditioning is an endogenous cardioprotective phenomenon that profoundly limits infarct size in experimental models. The current challenge is to translate this paradigm from the laboratory to the clinic. Accordingly, our goal in this review is to provide a critical summary of the progress toward, opportunities for, and caveats to, the successful clinical translation of postconditioning and remote conditioning, the 2 conditioning strategies considered to have the broadest applicability for real-world patient care. In the majority of phase II studies published to date, postconditioning evoked a ≈35% reduction of infarct size in ST-segment-elevation myocardial infarction patients. Essential criteria for the successful implementation of postconditioning include the appropriate choice of patients (ie, those with large risk regions and negligible collateral flow), timely application of the postconditioning stimulus (immediately on reperfusion), together with proper choice of end points (infarct size, with concomitant assessment of risk region). Remote conditioning has been applied in planned ischemic events (including cardiac surgery and elective percutaneous coronary intervention) and in ST-segment-elevation myocardial infarction patients during hospital transport. Controversies with regard to efficacy have emerged, particularly among surgical trials. These disparate outcomes in all likelihood reflect the remarkable heterogeneity within and among studies, together with a deficit in our understanding of the impact of these variations on the infarct-sparing effect of remote conditioning. Ongoing phase III trials will provide critical insight into the future role of postconditioning and remote conditioning as clinically relevant cardioprotective strategies.
KW - ischemic postconditioning
KW - myocardial infarction
KW - myocardial ischemia
KW - remote conditioning
KW - reperfusion
UR - http://www.scopus.com/inward/record.url?scp=84881650891&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.113.300764
DO - 10.1161/CIRCRESAHA.113.300764
M3 - Review article
C2 - 23908331
AN - SCOPUS:84881650891
SN - 0009-7330
VL - 113
SP - 439
EP - 450
JO - Circulation Research
JF - Circulation Research
IS - 4
ER -