Abstract
In this study, we report enhancement in heat capacity of SiO2 nanoparticle dispersions in a molten ternary nitrate salt (NaNO3, KNO3, and Ca(NO3)2) to obtain an effective heat transfer fluid (HTF)/thermal energy storage (TES) for concentrated solar power (CSP) application. The enhanced heat capacity of the molten salt mixture is expected to greatly increase thermal storage density of HTF/TES, and thus the cost of electricity produced by CSP plant can be significantly reduced. A custom two-step method was used to synthesize SiO2 nanoparticle/ternary salt mixture. The nanoparticle concentration of the mixture was fixed at 1% by weight for comparison with the previous studies. A modulated differential scanning calorimeter (MDSC) was employed to measure heat capacity of the mixture, and it was found to be enhanced by ∼19% compared to the pure ternary salt.
Original language | English |
---|---|
Article number | 051901 |
Journal | Journal of Heat Transfer |
Volume | 138 |
Issue number | 5 |
DOIs | |
State | Published - May 2016 |
Keywords
- concentrated solar power
- heat capacity
- heat transfer
- molten salt
- nanoparticle