TY - JOUR
T1 - Reduction of infarct size in vivo with ischemic preconditioning
T2 - Mathematical evidence for protection via non-ischemic tissue
AU - Whittaker, P.
AU - Przyklenk, K.
PY - 1994/1
Y1 - 1994/1
N2 - We constructed a mathematical model of ischemic preconditioning based on experimental data obtained from rat hearts. In this animal model of low collateral blood flow, we found that infarct size in preconditioned hearts, expressed as a percentage of area at risk, increased as the size of the area at risk increased (r=0.76, p=0.0007). In contrast, infarct size in control hearts appeared independent of changes in area at risk. Similarly, the lateral distance between the edge of the area at risk and the edge of the area of necrosis did not vary with risk region in control hearts, but in preconditioned hearts, lateral distance decreased as the size of the area at risk increased (r=-0.67, p=0.0046). We used these findings to develop a simple model which provided mathematical relationships between lateral distance and area at risk and between infarct size and area at risk for both control and preconditioned hearts that were consistent with the experimental data. These relationships led us to propose that in preconditioned hearts 1) a protective substance may be produced or activated throughout the heart, and 2) that the protective substance may be transported by diffusion. If we assumed uniform production of protective substance in an amount proportional to the size of the ischemic and non-ischemic areas, we were able to derive, using a simple diffusion model, relationships between the above variables that were consistent with our mathematical model and with the experimental data. Although our model does not identify the protective substance, its implications provide ideas for additional crucial experiments that may enhance our understanding of ischemic preconditioning.
AB - We constructed a mathematical model of ischemic preconditioning based on experimental data obtained from rat hearts. In this animal model of low collateral blood flow, we found that infarct size in preconditioned hearts, expressed as a percentage of area at risk, increased as the size of the area at risk increased (r=0.76, p=0.0007). In contrast, infarct size in control hearts appeared independent of changes in area at risk. Similarly, the lateral distance between the edge of the area at risk and the edge of the area of necrosis did not vary with risk region in control hearts, but in preconditioned hearts, lateral distance decreased as the size of the area at risk increased (r=-0.67, p=0.0046). We used these findings to develop a simple model which provided mathematical relationships between lateral distance and area at risk and between infarct size and area at risk for both control and preconditioned hearts that were consistent with the experimental data. These relationships led us to propose that in preconditioned hearts 1) a protective substance may be produced or activated throughout the heart, and 2) that the protective substance may be transported by diffusion. If we assumed uniform production of protective substance in an amount proportional to the size of the ischemic and non-ischemic areas, we were able to derive, using a simple diffusion model, relationships between the above variables that were consistent with our mathematical model and with the experimental data. Although our model does not identify the protective substance, its implications provide ideas for additional crucial experiments that may enhance our understanding of ischemic preconditioning.
KW - Diffusion
KW - infarct size
KW - ischemia
KW - ischemic preconditioning
KW - mathematical model
UR - http://www.scopus.com/inward/record.url?scp=0028329382&partnerID=8YFLogxK
U2 - 10.1007/BF00788673
DO - 10.1007/BF00788673
M3 - Article
C2 - 8010936
AN - SCOPUS:0028329382
SN - 0300-8428
VL - 89
SP - 6
EP - 15
JO - Basic Research in Cardiology
JF - Basic Research in Cardiology
IS - 1
ER -