Self-interaction error overbinds water clusters but cancels in structural energy differences

Kamal Sharkas, Kamal Wagle, Biswajit Santra, Sharmin Akter, Rajendra R. Zope, Tunna Baruah, Koblar A. Jackson, John P. Perdew, Juan E. Peralta

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


We gauge the importance of self-interaction errors in density functional approximations (DFAs) for the case of water clusters. To this end, we used the Fermi-Lo¨wdin orbital self-interaction correction method (FLOSIC) to calculate the binding energy of clusters of up to eight water molecules. Three representative DFAs of the local, generalized gradient, and metageneralized gradient families [i.e., local density approximation (LDA), Perdew- Burke-Ernzerhof (PBE), and strongly constrained and appropriately normed (SCAN)] were used. We find that the overbinding of the water clusters in these approximations is not a densitydriven error. We show that, while removing self-interaction error does not alter the energetic ordering of the different water isomers with respect to the uncorrected DFAs, the resulting binding energies are corrected toward accurate reference values from higher-level calculations. In particular, self-interaction-corrected SCAN not only retains the correct energetic ordering for water hexamers but also reduces the mean error in the hexamer binding energies to less than 14 meV/H2O from about 42 meV/H2O for SCAN. By decomposing the total binding energy into manybody components, we find that large errors in the two-body interaction in SCAN are significantly reduced by self-interaction corrections. Higher-order many-body errors are small in both SCAN and self-interaction-corrected SCAN. These results indicate that orbital-by-orbital removal of self-interaction combined with a proper DFA can lead to improved descriptions of water complexes.

Original languageEnglish
Article number11283
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number21
StatePublished - May 26 2020


  • DFT
  • Hydrogen bond
  • SCAN meta-GGA
  • Self-interaction
  • Water


Dive into the research topics of 'Self-interaction error overbinds water clusters but cancels in structural energy differences'. Together they form a unique fingerprint.

Cite this