TY - JOUR
T1 - Structural coherence and ferroelectric order in nanosized multiferroic YMnO 3
AU - Tripathi, S.
AU - Petkov, V.
AU - Selbach, S. M.
AU - Bergum, K.
AU - Einarsrud, M. A.
AU - Grande, T.
AU - Ren, Y.
PY - 2012/9/4
Y1 - 2012/9/4
N2 - Atomic-scale structure studies involving synchrotron x-ray diffraction (SXRD) and pair distribution function (PDF) analysis on a series of YMnO 3 particles with sizes ranging from 467 ± 42 (bulk) to 10 ± 1 nm are presented. Studies reveal that while the nanoparticles retain most of the characteristics of the layered hexagonal-type structure of the bulk, substantial local atomic displacements arise with diminishing particle size. The displacements lead to a very substantial loss of structural coherence in the particles of size smaller than 100 nm. The displacements mostly affect the yttrium (Y) atoms and to a lesser extent the Mn-O sublattice in YMnO 3. We argue that the increased displacement of Y atoms along the polar c axis of the hexagonal unit cell may result in enhanced local ferroelectric distortions with decreasing particle size. The planar, that is, a- and b-axis direction displacements of Y atoms, however, may interfere with the cooperative ferroelectricity of nanosized YMnO 3, so future efforts to employ YMnO 3 in nanoscale applications should take them into account.
AB - Atomic-scale structure studies involving synchrotron x-ray diffraction (SXRD) and pair distribution function (PDF) analysis on a series of YMnO 3 particles with sizes ranging from 467 ± 42 (bulk) to 10 ± 1 nm are presented. Studies reveal that while the nanoparticles retain most of the characteristics of the layered hexagonal-type structure of the bulk, substantial local atomic displacements arise with diminishing particle size. The displacements lead to a very substantial loss of structural coherence in the particles of size smaller than 100 nm. The displacements mostly affect the yttrium (Y) atoms and to a lesser extent the Mn-O sublattice in YMnO 3. We argue that the increased displacement of Y atoms along the polar c axis of the hexagonal unit cell may result in enhanced local ferroelectric distortions with decreasing particle size. The planar, that is, a- and b-axis direction displacements of Y atoms, however, may interfere with the cooperative ferroelectricity of nanosized YMnO 3, so future efforts to employ YMnO 3 in nanoscale applications should take them into account.
UR - http://www.scopus.com/inward/record.url?scp=84866133796&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.86.094101
DO - 10.1103/PhysRevB.86.094101
M3 - Article
AN - SCOPUS:84866133796
VL - 86
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 9
M1 - 094101
ER -