Structural, optical, and catalytic properties of mgcr2o4 spinel-type nanostructures synthesized by sol–gel auto-combustion method

Vasyl Mykhailovych, Andrii Kanak, Ştefana Cojocaru, Elena Daniela Chitoiu-Arsene, Mircea Nicolae Palamaru, Alexandra Raluca Iordan, Oleksandra Korovyanko, Andrei Diaconu, Viorela Gabriela Ciobanu, Gabriel Caruntu, Oleh Lushchak, Petro Fochuk, Yuriy Khalavka, Aurelian Rotaru

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Spinel chromite nanoparticles are prospective candidates for a variety of applications from catalysis to depollution. In this work, we used a sol–gel auto-combustion method to synthesize spinel-type MgCr2O4 nanoparticles by using fructose (FS), tartaric acid (TA), and hexamethylenetetramine (HMTA) as chelating/fuel agents. The optimal temperature treatment for the formation of impurity-free MgCr2O4 nanostructures was found to range from 500 to 750 °C. Fourier transform infrared (FTIR) spectroscopy was used to determine the lattice vibrations of the corresponding chemical bonds from octahedral and tetrahedral positions, and the optical band gap was calculated from UV–VIS spectrophotometry. The stabilization of the spinel phase was proved by X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis. From field-emission scanning electron microscopy (FE-SEM), we found that the size of the constituent particles ranged from 10 to 40 nm. The catalytic activity of the as-prepared MgCr2O4 nanocrystals synthesized by using tartaric acid as a chelating/fuel agent was tested on the decomposition of hydrogen peroxide. In particular, we found that the nature of the chelating/fuel agent as well as the energy released during the auto-combustion played an important role on the structural, optical, and catalytic properties of MgCr2O4 nanoparticles obtained by this synthetic route.

Original languageEnglish
Article number1476
JournalCatalysts
Volume11
Issue number12
DOIs
StatePublished - Dec 2021

Keywords

  • Catalysis
  • MgCr2O4 nanoparticles
  • Sol–gel auto-combustion method
  • Spinel

Fingerprint

Dive into the research topics of 'Structural, optical, and catalytic properties of mgcr2o4 spinel-type nanostructures synthesized by sol–gel auto-combustion method'. Together they form a unique fingerprint.

Cite this