Abstract
Interest in producing magnetic nanoparticles with controllable sizes has led to the development of new synthesis methods. In this article, we report the synthesis of sub 4 nm cobalt nanoparticles by using pulsed laser irradiation to decompose cobalt carbonyl in a solution of stabilizing ligands. The physical characteristics of the synthesized nanoparticles were determined by transmission electron microscopy, powder X-ray diffractometry, and SQUID magnometry. It was possible to control the size of the synthesized nanoparticles by varying the reaction conditions such as the ligand concentration and the wavelength of light used. The formation mechanism of the nanoparticles was also investigated by changing these conditions. It is possible that this technique could be applied to the synthesis of a variety of nanomaterials with potential applications such as biomedicine, catalysis, and water purification.
Original language | English |
---|---|
Pages (from-to) | 9497-9501 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry C |
Volume | 113 |
Issue number | 22 |
DOIs | |
State | Published - Jun 4 2009 |