TY - JOUR
T1 - Targeted inhibition of the serotonin 5HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis
AU - Przyklenk, K.
AU - Frelinger, A. L.
AU - Linden, M. D.
AU - Whittaker, P.
AU - Li, Y.
AU - Barnard, M. R.
AU - Adams, J.
AU - Morgan, M.
AU - Al-Shamma, H.
AU - Michelson, A. D.
PY - 2010/2
Y1 - 2010/2
N2 - Background: Release of serotonin and activation of serotonin 5HT2A receptors on platelet surfaces is a potent augmentative stimulus for platelet aggregation. However, earlier-generation serotonin receptor antagonists were not successfully exploited as antiplatelet agents, possibly owing to their lack of specificity for the 5HT2A receptor subtype. Objective: To assess whether targeted inhibition of the serotonin 5HT2A receptor attenuates recurrent thrombosis and improves coronary patency in an in vivo canine model mimicking unstable angina. Methods: In protocol 1, anesthetized dogs were pretreated with a novel, selective inverse agonist of the 5HT2A receptor (APD791) or saline. Recurrent coronary thrombosis was then initiated by coronary artery injury + stenosis, and coronary patency was monitored for 3 h. Protocol 2 was similar, except that: (i) treatment with APD791 or saline was begun 1 h after the onset of recurrent thrombosis; (ii) template bleeding time was measured; and (iii) blood samples were obtained for in vitro flow cytometric assessment of platelet responsiveness to serotonin. Results: APD791 attenuated recurrent thrombosis, irrespective of the time of treatment: in both protocols, flow-time area (index of coronary patency; normalized to baseline coronary flow) averaged 58-59% (P < 0.01) following administration of APD791 vs. 21-28% in saline controls. Moreover, the in vivo antithrombotic effect of APD791 was not accompanied by increased bleeding, but was associated with significant and selective inhibition of serotonin-mediated platelet activation. Conclusion: 5HT2A receptor inhibition with APD791, even when initiated after the onset of recurrent thrombosis, improves coronary patency in the in vivo canine model.
AB - Background: Release of serotonin and activation of serotonin 5HT2A receptors on platelet surfaces is a potent augmentative stimulus for platelet aggregation. However, earlier-generation serotonin receptor antagonists were not successfully exploited as antiplatelet agents, possibly owing to their lack of specificity for the 5HT2A receptor subtype. Objective: To assess whether targeted inhibition of the serotonin 5HT2A receptor attenuates recurrent thrombosis and improves coronary patency in an in vivo canine model mimicking unstable angina. Methods: In protocol 1, anesthetized dogs were pretreated with a novel, selective inverse agonist of the 5HT2A receptor (APD791) or saline. Recurrent coronary thrombosis was then initiated by coronary artery injury + stenosis, and coronary patency was monitored for 3 h. Protocol 2 was similar, except that: (i) treatment with APD791 or saline was begun 1 h after the onset of recurrent thrombosis; (ii) template bleeding time was measured; and (iii) blood samples were obtained for in vitro flow cytometric assessment of platelet responsiveness to serotonin. Results: APD791 attenuated recurrent thrombosis, irrespective of the time of treatment: in both protocols, flow-time area (index of coronary patency; normalized to baseline coronary flow) averaged 58-59% (P < 0.01) following administration of APD791 vs. 21-28% in saline controls. Moreover, the in vivo antithrombotic effect of APD791 was not accompanied by increased bleeding, but was associated with significant and selective inhibition of serotonin-mediated platelet activation. Conclusion: 5HT2A receptor inhibition with APD791, even when initiated after the onset of recurrent thrombosis, improves coronary patency in the in vivo canine model.
KW - Angina
KW - Platelets
KW - Serotonin
KW - Thrombosis
UR - http://www.scopus.com/inward/record.url?scp=74749106019&partnerID=8YFLogxK
U2 - 10.1111/j.1538-7836.2009.03693.x
DO - 10.1111/j.1538-7836.2009.03693.x
M3 - Article
C2 - 19922435
AN - SCOPUS:74749106019
VL - 8
SP - 331
EP - 340
JO - Journal of Thrombosis and Haemostasis
JF - Journal of Thrombosis and Haemostasis
SN - 1538-7933
IS - 2
ER -