TY - JOUR
T1 - The genetic determinates of E. coli survival in beach sand
AU - Rumball, Natalie
AU - Alm, Elizabeth Wheeler
PY - 2022/12
Y1 - 2022/12
N2 - Escherichia coli contain a high level of genetic diversity and are generally associated with the guts of warm-blooded animals but have also been isolated from secondary habitats outside hosts. We used E. coli isolates from previous in situ microcosm experiments conducted under actual beach conditions to perform population level genomic analysis to identify accessory genes associated with survival within the beach sand environment. E. coli strains capable of surviving had been selected for by seeding isolates originating from sand, sewage, and gull waste (n = 528; 176 from each source) into sand, which was sealed in microcosm chambers and buried for 45 days in the backshore beach of Lake Michigan. In the current work, survival-associated genes were identified by comparing the pangenome of viable E. coli populations at the end of the microcosm experiment with the original isolate collection and identifying loci enriched in the samples. We found that environmental survival was associated with a wide variety of genetic factors, with the majority corresponding to metabolism enzymes and transport proteins. Of the 414 unique functions identified, most were present across E. coli phylogroups, except B2, which is often associated with human pathogens. Gene modules that were enriched in surviving populations included a betaine biosynthesis pathway, which produces an osmoprotectant, and the GABA (gamma-aminobutyrate) biosynthesis pathway, which aids in pH homeostasis and nutrient use versatility. Overall, these results demonstrate that the genetic flexibility within this species allows survival in the environment for extended periods.
AB - Escherichia coli contain a high level of genetic diversity and are generally associated with the guts of warm-blooded animals but have also been isolated from secondary habitats outside hosts. We used E. coli isolates from previous in situ microcosm experiments conducted under actual beach conditions to perform population level genomic analysis to identify accessory genes associated with survival within the beach sand environment. E. coli strains capable of surviving had been selected for by seeding isolates originating from sand, sewage, and gull waste (n = 528; 176 from each source) into sand, which was sealed in microcosm chambers and buried for 45 days in the backshore beach of Lake Michigan. In the current work, survival-associated genes were identified by comparing the pangenome of viable E. coli populations at the end of the microcosm experiment with the original isolate collection and identifying loci enriched in the samples. We found that environmental survival was associated with a wide variety of genetic factors, with the majority corresponding to metabolism enzymes and transport proteins. Of the 414 unique functions identified, most were present across E. coli phylogroups, except B2, which is often associated with human pathogens. Gene modules that were enriched in surviving populations included a betaine biosynthesis pathway, which produces an osmoprotectant, and the GABA (gamma-aminobutyrate) biosynthesis pathway, which aids in pH homeostasis and nutrient use versatility. Overall, these results demonstrate that the genetic flexibility within this species allows survival in the environment for extended periods.
UR - https://journals.asm.org/doi/abs/10.1128/aem.01423-22
M3 - Article
SN - 0099-2240
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
ER -