Thermodynamic optimization of an intercooled reheat regenerative gas turbine power plant

Yousef Haseli

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

Optimization of an intercooled reheat regenerative gas turbine power plant combined(ICRHR) is presented in this chapter. The plant consists of eight components, namely LPand HP compressors; intercooler; regenerator; combustor; HP and LP turbines; andreheater. Optimum pressure ratios across the compressors and the turbines aredetermined. Explicit relationships are derived for the net work and the thermal efficiencyof the plant through thermodynamic models of the components, which are expressed asfunctions of total pressure drop within the cycle, ratio of maximum temperature tominimum temperature of the cycle, efficiencies of the turbines and the compressors,regenerator effectiveness, and overall pressure ratio of the system. It is shown that themaximum thermal efficiency design has the advantages of a higher efficiency, loweremissions, and smaller sizes of turbines and compressors, compared to the maximumwork design. Hence, the optimization of the power cycle is carried out by maximizing thethermal efficiency with respect to the overall pressure ratio. The results are presented forthe optimal pressure ratio and the corresponding maximum efficiency and the workoutput versus the ratio of the highest-to-lowest temperatures and the pressure drop factor.Also, a typical comparison is made between the optimum design points of a regenerativegas turbine engine (RGT) and ICRHR cycle in terms of the optimum pressure ratio,optimal thermal efficiency and the corresponding work output under identical conditions.

Original languageEnglish
Title of host publicationGas Turbines
Subtitle of host publicationTechnology, Efficiency and Performance
PublisherNova Science Publishers, Inc.
Pages71-88
Number of pages18
ISBN (Print)9781611228427
StatePublished - 2011

Fingerprint

Dive into the research topics of 'Thermodynamic optimization of an intercooled reheat regenerative gas turbine power plant'. Together they form a unique fingerprint.

Cite this