Abstract
Lipoprotein lipase (LPL) is a key regulator of triglyceride clearance. Its coordinated regulation during feeding and fasting is critical for maintaining lipid homeostasis and energy supply. Angiopoietin-like (Angptl)3 and Angptl4 are secreted proteins that have been demonstrated to regulate triglyceride metabolism by inhibiting LPL. We have taken a targeted genetic approach to generate Angptl4- and Angptl3-deficient mice as well as transgenic mice overexpressing human Angptl4 in the liver. The Angptl4 transgenic mice displayed elevated plasma triglycerides and reduced postheparin plasma (PHP) LPL activity. A purified recombinant Angptl4 protein inhibited mouse LPL and recombinant human LPL activity in vitro. In contrast to the transgenic mice, Angptl4-deficient mice displayed hypotriglyceridemia and increased PHP LPL activity, with greater effects in the fasted compared with the fed state. Angptl3-deficient mice also displayed hypotriglyceridemia with elevated PHP LPL activity, but these mice showed a greater effect in the fed state. Mice deficient in both Angptl proteins showed an additive effect on plasma triglycerides and did not survive past 2 months of age. Our results show that Angptl3 and Angptl4 function to regulate circulating triglyceride levels during different nutritional states and therefore play a role in lipid metabolism during feeding/fasting through differential inhibition of LPL.
Original language | English |
---|---|
Pages (from-to) | 4943-4950 |
Number of pages | 8 |
Journal | Endocrinology |
Volume | 146 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2005 |
Externally published | Yes |