TY - JOUR
T1 - Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice
T2 - Behavioral and neuropathological analysis
AU - Fink, Kyle D.
AU - Rossignol, Julien
AU - Crane, Andrew T.
AU - Davis, Kendra K.
AU - Bombard, Matthew C.
AU - Bavar, Angela M.
AU - Clerc, Steven
AU - Lowrance, Steven A.
AU - Song, Cheng
AU - Lescaudron, Laurent
AU - Dunbar, Gary L.
N1 - Funding Information:
Support for this project was provided by a Partner University Fund grant (Chateaubriand fellowship from the Embassy of France in the U.S. to KDF), INSERM U643 (to KDF) and funding from the John G. Kulhavi Professorship and Field Neurosciences Institute (to GLD).
PY - 2013
Y1 - 2013
N2 - Introduction. Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods. Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results: Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions: The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD.
AB - Introduction. Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods. Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results: Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions: The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD.
UR - http://www.scopus.com/inward/record.url?scp=84886068413&partnerID=8YFLogxK
U2 - 10.1186/scrt341
DO - 10.1186/scrt341
M3 - Article
C2 - 24456799
AN - SCOPUS:84886068413
SN - 1757-6512
VL - 4
JO - Stem Cell Research and Therapy
JF - Stem Cell Research and Therapy
IS - 5
M1 - 130
ER -