TY - JOUR
T1 - Turning polymer foams or polymer-film systems into ferroelectrets
T2 - Dielectric barrier discharges in voids
AU - Qiu, Xunlin
AU - Gerhard, Reimund
AU - Mellinger, Axel
PY - 2011/2
Y1 - 2011/2
N2 - Polymer foams and void-containing polymer-film systems with internally charged voids combine large piezoelectricity with mechanical flexibility and elastic compliance. This new class of soft materials (often called ferro-or piezoelectrets) has attracted considerable attention from science and industry. It has been found that the voids can be internally charged by means of dielectric barrier discharges (DBDs) under high electric fields. The charged voids can be considered as man-made macroscopic dipoles. Depending on the ferroelectret structure and the pressure of the internal gas, the voids may be highly compressible. Consequently, very large dipole-moment changes can be induced by mechanical or electrical stresses, leading to large piezoelectricity. DBD charging of the voids is a critical process for rendering polymer foams piezoelectric. Thus a comprehensive exploration of DBD charging is essential for the understanding and the optimization of piezoelectricity in ferroelectrets. Recent studies show that DBDs in the voids are triggered when the internal electric field reaches a threshold value according to Townsend's model of Paschen breakdown. During the DBDs, charges of opposite polarity are generated and trapped at the top and bottom internal surfaces of the gas-filled voids, respectively. The deposited charges induce an electric field opposite to the externally applied one and thus extinguish the DBDs. Back discharges may eventually be triggered when the external voltage is reduced or turned off. In order to optimize the efficiency of DBD charging, the geometry (in particular the height) of the voids, the type of gas and its pressure inside the voids are essential factors to be considered and to be optimized. In addition, the influence of the plasma treatment on the internal void surfaces during the DBDs should be taken into consideration.
AB - Polymer foams and void-containing polymer-film systems with internally charged voids combine large piezoelectricity with mechanical flexibility and elastic compliance. This new class of soft materials (often called ferro-or piezoelectrets) has attracted considerable attention from science and industry. It has been found that the voids can be internally charged by means of dielectric barrier discharges (DBDs) under high electric fields. The charged voids can be considered as man-made macroscopic dipoles. Depending on the ferroelectret structure and the pressure of the internal gas, the voids may be highly compressible. Consequently, very large dipole-moment changes can be induced by mechanical or electrical stresses, leading to large piezoelectricity. DBD charging of the voids is a critical process for rendering polymer foams piezoelectric. Thus a comprehensive exploration of DBD charging is essential for the understanding and the optimization of piezoelectricity in ferroelectrets. Recent studies show that DBDs in the voids are triggered when the internal electric field reaches a threshold value according to Townsend's model of Paschen breakdown. During the DBDs, charges of opposite polarity are generated and trapped at the top and bottom internal surfaces of the gas-filled voids, respectively. The deposited charges induce an electric field opposite to the externally applied one and thus extinguish the DBDs. Back discharges may eventually be triggered when the external voltage is reduced or turned off. In order to optimize the efficiency of DBD charging, the geometry (in particular the height) of the voids, the type of gas and its pressure inside the voids are essential factors to be considered and to be optimized. In addition, the influence of the plasma treatment on the internal void surfaces during the DBDs should be taken into consideration.
KW - Ferroelectret
KW - dielectric barrier discharge (DBD)
KW - effective polarization
KW - man-made dipole
KW - piezoelectret
UR - http://www.scopus.com/inward/record.url?scp=79551623988&partnerID=8YFLogxK
U2 - 10.1109/TDEI.2011.5704490
DO - 10.1109/TDEI.2011.5704490
M3 - Article
AN - SCOPUS:79551623988
SN - 1070-9878
VL - 18
SP - 34
EP - 42
JO - IEEE Transactions on Dielectrics and Electrical Insulation
JF - IEEE Transactions on Dielectrics and Electrical Insulation
IS - 1
M1 - 5704490
ER -