TY - JOUR
T1 - Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands
AU - Herrero, Juan
AU - Weindorf, David C.
AU - Castañeda, Carmen
N1 - Funding Information:
This article is a result of the research project AGL2012-40100 funded by the Spanish Ministry of Economy and Competitiveness. The authors thank Texas Tech University and the BL Allen Endowment for Pedology for the facilities and support provided in the framework of the Letter of Intent between CSIC and TTU.
Publisher Copyright:
© 2015 Herrero et al.
PY - 2015/5/22
Y1 - 2015/5/22
N2 - Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.
AB - Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.
UR - http://www.scopus.com/inward/record.url?scp=84930650044&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0126493
DO - 10.1371/journal.pone.0126493
M3 - Article
C2 - 26001130
AN - SCOPUS:84930650044
VL - 10
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 5
M1 - 0126493
ER -