TY - JOUR
T1 - Understanding the role of momentum in stochastic gradient methods
AU - Gitman, Igor
AU - Lang, Hunter
AU - Zhang, Pengchuan
AU - Xiao, Lin
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - The use of momentum in stochastic gradient methods has become a widespread practice in machine learning. Different variants of momentum, including heavy-ball momentum, Nesterov's accelerated gradient (NAG), and quasi-hyperbolic momentum (QHM), have demonstrated success on various tasks. Despite these empirical successes, there is a lack of clear understanding of how the momentum parameters affect convergence and various performance measures of different algorithms. In this paper, we use the general formulation of QHM to give a unified analysis of several popular algorithms, covering their asymptotic convergence conditions, stability regions, and properties of their stationary distributions. In addition, by combining the results on convergence rates and stationary distributions, we obtain sometimes counter-intuitive practical guidelines for setting the learning rate and momentum parameters.
AB - The use of momentum in stochastic gradient methods has become a widespread practice in machine learning. Different variants of momentum, including heavy-ball momentum, Nesterov's accelerated gradient (NAG), and quasi-hyperbolic momentum (QHM), have demonstrated success on various tasks. Despite these empirical successes, there is a lack of clear understanding of how the momentum parameters affect convergence and various performance measures of different algorithms. In this paper, we use the general formulation of QHM to give a unified analysis of several popular algorithms, covering their asymptotic convergence conditions, stability regions, and properties of their stationary distributions. In addition, by combining the results on convergence rates and stationary distributions, we obtain sometimes counter-intuitive practical guidelines for setting the learning rate and momentum parameters.
UR - http://www.scopus.com/inward/record.url?scp=85090170101&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85090170101
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -