TY - JOUR
T1 - Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles
AU - Haseli, Y.
AU - Dincer, I.
AU - Naterer, G. F.
N1 - Funding Information:
The authors acknowledge the support provided by the Ontario Research Excellence Fund.
PY - 2008/1
Y1 - 2008/1
N2 - The exergy efficiency of three standard thermodynamic cycles, i.e., Brayton, Rankine and Otto cycles, are developed and the corresponding analytical equations are derived accordingly. The resultant expressions are applied to typical operating conditions and numerical results are obtained, when the heat of each engine is supplied by burning natural gas as a fuel with 100 percent theoretical air. A common result is the significant effect of the maximum cycle temperature, which causes an increase of exergy efficiency. It is shown that the compression ratio of the Brayton and Otto cycles, as well as the turbine inlet pressure in a steam power plant, raise the exergy efficiency. Moreover, increasing the ambient temperature has a negative influence on the exergy efficiency in the Brayton and Otto cycles, which occurs due to ambient air fed to these systems, thereby decreasing the deviation of the system from ambient conditions and reducing the exergy efficiency. Further findings include an optimal performance point of the Brayton and Rankine cycle, with a high sustainability and exergy efficiency. For instance, at the optimal operating point of the Brayton cycle with a compression ratio of 8 (or 12 for a second case), the exergy efficiency is 73 (60) percent, CO2 emissions is 530 (590) g/kWh and the sustainability index is 3.8 (2.8). The optimal operating point for an example of a Rankine cycle is found to be 50 percent for the exergy efficiency, with 440g/kWh of emitted CO2 and a sustainability index of two.
AB - The exergy efficiency of three standard thermodynamic cycles, i.e., Brayton, Rankine and Otto cycles, are developed and the corresponding analytical equations are derived accordingly. The resultant expressions are applied to typical operating conditions and numerical results are obtained, when the heat of each engine is supplied by burning natural gas as a fuel with 100 percent theoretical air. A common result is the significant effect of the maximum cycle temperature, which causes an increase of exergy efficiency. It is shown that the compression ratio of the Brayton and Otto cycles, as well as the turbine inlet pressure in a steam power plant, raise the exergy efficiency. Moreover, increasing the ambient temperature has a negative influence on the exergy efficiency in the Brayton and Otto cycles, which occurs due to ambient air fed to these systems, thereby decreasing the deviation of the system from ambient conditions and reducing the exergy efficiency. Further findings include an optimal performance point of the Brayton and Rankine cycle, with a high sustainability and exergy efficiency. For instance, at the optimal operating point of the Brayton cycle with a compression ratio of 8 (or 12 for a second case), the exergy efficiency is 73 (60) percent, CO2 emissions is 530 (590) g/kWh and the sustainability index is 3.8 (2.8). The optimal operating point for an example of a Rankine cycle is found to be 50 percent for the exergy efficiency, with 440g/kWh of emitted CO2 and a sustainability index of two.
KW - Efficiency
KW - Energy
KW - Environmental impact
KW - Exergy
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=40349096623&partnerID=8YFLogxK
U2 - 10.1080/15435070701839462
DO - 10.1080/15435070701839462
M3 - Article
AN - SCOPUS:40349096623
SN - 1543-5075
VL - 5
SP - 105
EP - 119
JO - International Journal of Green Energy
JF - International Journal of Green Energy
IS - 1-2
ER -