Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles

Y. Haseli, I. Dincer, G. F. Naterer

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The exergy efficiency of three standard thermodynamic cycles, i.e., Brayton, Rankine and Otto cycles, are developed and the corresponding analytical equations are derived accordingly. The resultant expressions are applied to typical operating conditions and numerical results are obtained, when the heat of each engine is supplied by burning natural gas as a fuel with 100 percent theoretical air. A common result is the significant effect of the maximum cycle temperature, which causes an increase of exergy efficiency. It is shown that the compression ratio of the Brayton and Otto cycles, as well as the turbine inlet pressure in a steam power plant, raise the exergy efficiency. Moreover, increasing the ambient temperature has a negative influence on the exergy efficiency in the Brayton and Otto cycles, which occurs due to ambient air fed to these systems, thereby decreasing the deviation of the system from ambient conditions and reducing the exergy efficiency. Further findings include an optimal performance point of the Brayton and Rankine cycle, with a high sustainability and exergy efficiency. For instance, at the optimal operating point of the Brayton cycle with a compression ratio of 8 (or 12 for a second case), the exergy efficiency is 73 (60) percent, CO2 emissions is 530 (590) g/kWh and the sustainability index is 3.8 (2.8). The optimal operating point for an example of a Rankine cycle is found to be 50 percent for the exergy efficiency, with 440g/kWh of emitted CO2 and a sustainability index of two.

Original languageEnglish
Pages (from-to)105-119
Number of pages15
JournalInternational Journal of Green Energy
Volume5
Issue number1-2
DOIs
StatePublished - Jan 2008

Keywords

  • Efficiency
  • Energy
  • Environmental impact
  • Exergy
  • Sustainability

Fingerprint

Dive into the research topics of 'Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles'. Together they form a unique fingerprint.

Cite this