TY - JOUR
T1 - Using statistics to automate stochastic optimization
AU - Lang, Hunter
AU - Zhang, Pengchuan
AU - Xiao, Lin
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Despite the development of numerous adaptive optimizers, tuning the learning rate of stochastic gradient methods remains a major roadblock to obtaining good practical performance in machine learning. Rather than changing the learning rate at each iteration, we propose an approach that automates the most common hand-tuning heuristic: use a constant learning rate until “progress stops”, then drop. We design an explicit statistical test that determines when the dynamics of stochastic gradient descent reach a stationary distribution. This test can be performed easily during training, and when it fires, we decrease the learning rate by a constant multiplicative factor. Our experiments on several deep learning tasks demonstrate that this statistical adaptive stochastic approximation (SASA) method can automatically find good learning rate schedules and match the performance of hand-tuned methods using default settings of its parameters. The statistical testing helps to control the variance of this procedure and improves its robustness.
AB - Despite the development of numerous adaptive optimizers, tuning the learning rate of stochastic gradient methods remains a major roadblock to obtaining good practical performance in machine learning. Rather than changing the learning rate at each iteration, we propose an approach that automates the most common hand-tuning heuristic: use a constant learning rate until “progress stops”, then drop. We design an explicit statistical test that determines when the dynamics of stochastic gradient descent reach a stationary distribution. This test can be performed easily during training, and when it fires, we decrease the learning rate by a constant multiplicative factor. Our experiments on several deep learning tasks demonstrate that this statistical adaptive stochastic approximation (SASA) method can automatically find good learning rate schedules and match the performance of hand-tuned methods using default settings of its parameters. The statistical testing helps to control the variance of this procedure and improves its robustness.
UR - http://www.scopus.com/inward/record.url?scp=85090175659&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85090175659
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -