Variability in isometric force and moment generating capacity of glenohumeral external rotator muscles

Joseph E. Langenderfer, Cameron Patthanacharoenphon, James E. Carpenter, Richard E. Hughes

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Background: Muscles which cause glenohumeral external rotation possess varying ability for generating force and moment due to differences in muscle architecture, moment arm, and the interaction of these two factors. This study's purpose was to determine a complete dataset of muscle-tendon parameters for predicting the moment generating capacity and force-length dependence for external rotation of infraspinatus, supraspinatus and teres minor muscles. Methods: Muscle fascicle length, sarcomere length, pennation angle, and muscle volume were measured for sub-regions of infraspinatus and supraspinatus, and teres minor from 10 glenohumeral specimens. Tendon excursion was measured for glenohumeral rotation. From these parameter measurements, optimal fascicle length, physiological cross-sectional area, muscle force-length dependence, and maximum isometric moment generating capacity were calculated. Findings: Substantial differences were found for optimal muscle length, physiologic cross-sectional area, and tendon length for the 10 specimens of this study. Muscle sub-region had a significant effect on the force-length relationship for infraspinatus (P < 0.001), but was not significant for supraspinatus (P = 0.49). For infraspinatus and supraspinatus, maximum isometric rotation moment capacity was greater at 10° versus 60° abduction (P < 0.001). Maximum isometric rotation moment capacity for the teres minor was greater at 10° versus 60° abduction (P < 0.01). Sub-regions demonstrated significant differences in isometric moment capacity (P < 0.001). Interpretation: Functional capabilities of these muscles depend on muscle architecture and moment arm as well as their combined effects. The results allow for development of stochastic and deterministic models of glenohumeral external rotation strength which can be used for prediction of muscle forces and joint moments.

Original languageEnglish
Pages (from-to)701-709
Number of pages9
JournalClinical Biomechanics
Volume21
Issue number7
DOIs
StatePublished - Aug 2006
Externally publishedYes

Keywords

  • External rotation
  • Muscle architecture
  • Shoulder

Fingerprint

Dive into the research topics of 'Variability in isometric force and moment generating capacity of glenohumeral external rotator muscles'. Together they form a unique fingerprint.

Cite this